Health Research

Health Research Library

Search

Cranberry impairs selected behaviors essential for virulence in Proteus mirabilis HI4320

Posted
Authors
McCall J, Hidalgo G, Asadishad B, Tufenkji N
Journal
Can J Microbiol 59(6):430-436
Abstract

Proteus mirabilis is an etiological agent of complicated urinary tract infections. North American cranberries (Vaccinium macrocarpon) have long been considered to have protective properties against urinary tract infections. This work reports the effects of cranberry powder (CP) on the motility of P. mirabilis HI4320 and its expression of flaA, flhD, and ureD. Our results show that swimming and swarming motilities and swarmer-cell differentiation were inhibited by CP. Additionally, transcription of the flagellin gene flaA and of flhD, the first gene of the flagellar master operon flhDC, decreased during exposure of P. mirabilis to various concentrations of CP. Moreover, using ureD-gfp, a fusion of the urease accessory gene ureD with gfp, we show that CP inhibits urease expression. Because we demonstrate that CP does not inhibit the growth of P. mirabilis, the observed effects are not attributable to toxicity. Taken together, our results demonstrate that CP hinders motility of P. mirabilis and reduces the expression of important virulence factors.

Cranberry Proanthocyanidins Improve Intestinal sIgA During Elemental Enteral Nutrition

Posted
Authors
Pierre JF, Heneghan AF, Feliciano RP, Shanmuganayagam D, Krueger CG, Reed JD, Kudsk KA
Journal
JPEN J Parenter Enteral Nutr DOI: 10.1177/0148607112473654
Abstract

Background: Elemental enteral nutrition (EEN) decreases gut-associated lymphoid tissue (GALT) function, including fewer Peyer's patch lymphocytes and lower levels of the tissue T helper 2 (Th2) cytokines and mucosal transport protein polymeric immunoglobulin receptor (pIgR), leading to lower luminal secretory immunoglobulin A (sIgA) levels. Since we recently demonstrated that cranberry proanthocyanidins (PACs) maintain the Th2 cytokine interleukin (IL)-4 when added to EEN, we hypothesized the addition of PACs to EEN would normalize other GALT parameters and maintain luminal levels of sIgA. Methods: Institute of Cancer Research mice were randomized (12/group) to receive chow, EEN, or EEN + PACs (100 mg/kg body weight) for 5 days, starting 2 days after intragastric cannulation. Ileum tissue was collected to measure IL-4 by enzyme-linked immunosorbent assay, pIgR by Western blot, and phosphorylated STAT-6 by microarray. Intestinal wash fluid was collected to measure sIgA by Western blot. Results: Compared with chow, EEN significantly decreased tissue IL-4, phosphorylated STAT-6, and pIgR. The addition of PACs to EEN prevented these alterations. Compared with chow, EEN resulted in significantly lower levels of luminal sIgA. The addition of PACs to EEN increased luminal sIgA levels compared with EEN alone. Conclusions: This study suggests the addition of PACs to EEN may support GALT function and maintain intestinal sIgA levels compared with EEN administration alone.

Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition

Posted
Authors
Pierre JF, Heneghan AF, Feliciano RP, Shanmuganayagam D, Roenneburg DA, Krueger CG, Reed JD, Kudsk KA
Journal
JPEN-Parenter Enter 37(3):401-9
Abstract

BACKGROUND: Lamina propria Th2 cytokines, interleukin (IL)-4 and IL-13, stimulate goblet cell (GC) proliferation and MUC2 production, which protect the intestinal mucosa. Elemental enteral nutrition (EEN) reduces tissue IL-4 and impairs barrier function. Proanthocyanidins (PACs) stimulate oral mucin levels. We hypothesized that adding PAC to EEN would maintain Th2-without stimulating Th1-cytokines and preserve luminal MUC2 vs EEN alone. Materials and
METHODS: Seventy mice were randomized to 5 diet groups-standard chow, intragastric EEN, or EEN with lowPAC, midPAC (50 mg), or highPAC (100 mg PAC/kg BW)-for 5 days, starting 2 days after gastric cannulation. Ileal tissue was analyzed for histomorphology and the cytokines IL-4, IL-13, IL-1, IL-6, and TNF- by enzyme-linked immunosorbent assay. MUC2 was measured in intestinal washes.
RESULTS: EEN lowered IL-13 (P .05) compared with standard chow, whereas IL-4 was not significant (P .07). LowPAC and midPAC increased IL-13 (P .05), whereas highPAC increased both IL-4 and IL-13 (P .05) compared with EEN. All EEN diets reduced (P .05) crypt depth compared with the chow group. Compared with standard chow, GC numbers and luminal MUC2 were reduced with EEN (P .05). These effects were attenuated (P .05) with midPAC and highPAC. No changes were observed in tissue Th1 cytokines.
CONCLUSIONS: Adding PACs to EEN reverses impaired intestinal barrier function following EEN by improving the gut mucous layer and function through increased GC size and number as well as levels of MUC2 and ileal IL-4 and IL-13.

Effects of anthocyanins on the AhR-CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines.

Posted
Authors
Kamenickova A, Anzenbacherova E, Pavek P, Soshilov AA, Denison MS, Zapletalova M, Anzenbacher P, Dvorak Z
Journal
Toxicol Lett 221(1):1-8
Abstract

Anthocyanins are plant pigments occurring in flowers and berry fruits. Since a phenomenon of food-drug interactions is increasingly emerging, we examined the effects of 21 major anthocyanins and the extracts from 3 food supplements containing anthocyanins on the aryl hydrocarbon receptor (AhR)-cytochrome P450 CYP1A1 signaling pathway in human hepatocytes and human hepatic HepG2 and intestinal LS174T cancer cells. Pelargonidin-3-O-rutinoside (PEL-2) and cyanidin-3,5-O-diglucoside (CYA-3) dose-dependently activated AhR, as revealed by gene reporter assay. PEL-2 and CYA-3 induced CYP1A1 mRNA but not protein in HepG2 and LS174T cells. Neither compounds induced CYP1A1 mRNA and protein in four different primary human hepatocytes cultures. The effects of PEL-2 and CYA-3 on AhR occurred by ligand-dependent and ligand-independent mechanisms, respectively, as demonstrated by ligand binding assay. In a direct enzyme inhibition assay, none of the antocyanins tested inhibited the CYP1A1 marker activity to less than 50% even at 100 μM concentration. PEL-2 and CYA-3 at 100 μM inhibited CYP1A1 to 79% and 65%, respectively. In conclusion, with exception of PEL-2 and CYA-3, there were no effects of 19 major anthocyanins and 3 food supplements containing anthocyanins on AhR-CYP1A1 signaling, implying zero potential of these compounds for food-drug interactions with respect to AhR-CYP1A1 pathway.

Effects of cranberry components on human aggressive periodontitis gingival fibroblasts.

Posted
Authors
Tipton DA, Babu JP, Dabbous MKh
Journal
J Periodontal Res 48(4):433-42
Abstract

BACKGROUND AND OBJECTIVE: Aggressive periodontitis (AgP) causes rapid periodontal breakdown involving AgP gingival fibroblast production of cytokines [i.e. interleukin (IL)-6, a bone metabolism regulator], and matrix metalloproteinase (MMP)-3. Lipopolysaccharide upregulates fibroblast IL-6 and MMP-3, via transcription factors (i.e. NF-kB). Cranberry (Vaccinium macrocarpon) inhibits lipopolysaccharide-stimulated macrophage and normal gingival fibroblast activities, but little is known of its effects on AgP fibroblasts. Objectives of this study are to use AgP fibroblasts, to determine cytotoxicity of cranberry components or periodontopathogen (Fusobacterium nucleatum, Porphyromonas gingivalis) lipopolysaccharide +/- cranberry components, and effects of cranberry components on lipopolysaccharide-stimulated NF-kB activation and IL-6 and MMP-3 production.
MATERIAL AND METHODS: AgP fibroblasts were incubated = 6 d with high molecular weight non-dialyzable material (NDM) (derived from cranberry juice (1-500 mug/mL) or lipopolysaccharide (1 mug/mL) +/- NDM. Membrane damage and viability were assessed by enzyme activity released into cell supernatants and activity of a mitochondrial enzyme, respectively. Secreted IL-6 and MMP-3 were measured by ELISA. NF-kB p65 was measured via binding to an oligonucleotide containing the NF-kB consensus site. Data were analyzed using analysis of variance and Scheffe's F procedure for post hoc comparisons.
RESULTS: Short-term exposure to NDM, or lipopolysaccharide +/- NDM caused no membrane damage. NDM (= 100 mug/mL) or lipopolysaccharide +/- NDM had no effect on viability = 7 d exposure. NDM (50 mug/mL) inhibited lipopolysaccharide-stimulated p65 (P = 0.003) and constitutive or lipopolysaccharide-stimulated MMP-3 (P = 0.02). NDM increased AgP fibroblast constitutive or lipopolysaccharide-stimulated IL-6 (P = 0.0001), but inhibited normal human gingival fibroblast IL-6 (P = 0.01).
CONCLUSION: Lack of toxicity of low NDM concentrations, and its inhibition of NF-kB and MMP-3, suggest that cranberry components may regulate AgP fibroblast inflammatory responses. Distinct effects of NDM on AgP and gingival fibroblast production of IL-6 (which can have both positive and negative effects on bone metabolism) may reflect phenotypic differences in IL-6 regulation in the two cell types.

Evidence that cranberry juice may improve augmentation index in overweight men.

Posted
Authors
Ruel G. Lapointe A. Pomerleau S. Couture P. Lemieux S. Lamarche B. Couillard C.
Journal
Nutr Res 33(1):41-9
Abstract

The stiffening of arteries is a key step in atherogenesis leading to cardiovascular disease. It has been suggested that dietary polyphenols may be cardioprotective through possible favorable effects on oxidative stress and vascular function. The present study was undertaken in order to examine the effect of consuming low-calorie cranberry juice cocktail (CJC), a source of polyphenols, on arterial stiffness in abdominally obese men. We hypothesize that regular CJC consumption will reduce circulating oxidized low-density lipoproteins concentrations and have a beneficial impact on endothelial function. Thirty-five men (mean age +/- SD: 45 +/- 10 years) were randomly assigned to drink 500 mL CJC/day (27% juice) or 500 mL placebo juice (PJ)/day for 4 weeks in a double-blind crossover design. Augmentation index (AIx), an index of arterial stiffness, was measured by applanation tonometry of the radial artery and the cardiometabolic profile was assessed in each participant before and after each phase of the study. We found no significant difference in AIx changes between men who consumed CJC or PJ for 4 weeks (P = .5820). Furthermore, there was no between-treatment difference in changes in AIx responses to salbutamol (P = .6303) and glyceryl trinitrate (P = .4224). No significant difference was noted in other cardiometabolic variables between men consuming PJ or CJC. However, a significant within group decrease in AIx (mean decrease +/- SE; -14.0 +/- 5.8%, P = .019) was noted following the consumption of 500 mL CJC/day for 4 weeks. Our results indicate that the effect of chronic consumption of CJC on AIx was not significantly different from changes associated with the consumption of PJ. However, the significant within-group decrease in AIx following CJC consumption in abdominally obese men may deserve further investigation.

Identification of polyphenols and their metabolites in human urine after cranberry-syrup consumption

Posted
Authors
Iswaldi I, Arraez-Roman D, Gomez-Caravaca AM, Contreras Mdel M, Uberos J, Segura-Carretero A, Fernandez-Gutierrez A
Journal
Food Chem Toxicol 55:484-92
Abstract

As the beneficial effects of American cranberry (Vaccinium macrocarpon) can be partly attributed to its phenolic composition, the evaluation of the physiological behaviour of this fraction is crucial. A rapid and sensitive method by ultra-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) has been used to identify phenolic metabolites in human urine after a single dose of cranberry syrup. Prior to the analysis, metabolites were extracted using an optimised solid-phase extraction procedure. All possible metabolites were investigated based on retention time, accurate mass data and isotope and fragmentation patterns. Free coumaroyl hexose (isomer 1 and 2), dihydroxybenzoic acid, caffeoyl glucose, dihydroferulic acid 4-O--d-glucuronide, methoxyquercetin 3-O-galactoside, scopoletin, myricetin and quercetin, together with other 23 phase-I and phase-II metabolites, including various isomers, could be tentatively identified in the urine. Afterwards, the metabolites were simultaneously screened in the urine of different subjects at 0, 2, 4, and 6h after the ingestion of cranberry syrup by Target Analysis(TM) software.

In vitro and in vivo antibacterial activities of cranberry press cake extracts alone or in combination with -lactams against Staphylococcus aureus

Posted
Authors
Diarra MS, Block G, Rempel H, Oomah BD, Harrison J, McCallum J, Boulanger S, Brouillette E, Gattuso M, Malouin F
Journal
BMC Complem Altern M 13:90
Abstract

BACKGROUND: Cranberry fruits possess many biological activities partly due to their various phenolic compounds; however the underlying modes of action are poorly understood. We studied the effect of cranberry fruit extracts on the gene expression of Staphylococcus aureus to identify specific cellular processes involved in the antibacterial action.
METHODS: Transcriptional profiles of four S. aureus strains grown in broth supplemented or not with 2 mg/ml of a commercial cranberry preparation (Nutricran90) were compared using DNA arrays to reveal gene modulations serving as markers for biological activity. Ethanol extracted pressed cakes from fresh fruits also produced various fractions and their effects on marker genes were demonstrated by qPCR. Minimal inhibitory concentrations (MICs) of the most effective cranberry fraction (FC111) were determined against multiple S. aureus strains and drug interactions with -lactam antibiotics were also evaluated. Incorporation assays with [(3)H]-radiolabeled precursors were performed to evaluate the effect of FC111 on DNA, RNA, peptidoglycan (PG) and protein biosynthesis.
RESULTS: Treatment of S. aureus with Nutricran90 or FC111 revealed a transcriptional signature typical of PG-acting antibiotics (up-regulation of genes vraR/S, murZ, lytM, pbp2, sgtB, fmt). The effect of FC111 on PG was confirmed by the marked inhibition of incorporation of D-[(3)H]alanine. The combination of -lactams and FC111 in checkerboard assays revealed a synergistic activity against S. aureus including strain MRSA COL, which showed a 512-fold drop of amoxicillin MIC in the presence of FC111 at MIC/8. Finally, a therapeutic proof of concept was established in a mouse mastitis model of infection. S. aureus-infected mammary glands were treated with amoxicillin, FC111 or a combination of both; only the combination significantly reduced bacterial counts from infected glands (P0.05) compared to the untreated mice.
CONCLUSIONS: The cranberry fraction FC111 affects PG synthesis of S. aureus and acts in synergy with -lactam antibiotics. Such a fraction easily obtained from poorly exploited press-cake residues, may find interesting applications in the agri-food sector and help reduce antibiotic usage in animal food production.

Inhibition of -amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes

Posted
Authors
Barrett A, Ndou T, Hughey CA, Straut C, Howell A, Dai Z, Kaletunc G
Journal
J Agric Food Chem 61(7):1477-86
Abstract

Proanthocyanidins and ellagitannins, referred to as "tannins", exist in many plant sources. These compounds interact with proteins due to their numerous hydroxyl groups, which are suitable for hydrophobic associations. It was hypothesized that tannins could bind to the digestive enzymes -amylase and glucoamylase, thereby inhibiting starch hydrolysis. Slowed starch digestion can theoretically increase satiety by modulating glucose "spiking" and depletion that occurs after carbohydrate-rich meals. Tannins were isolated from extracts of pomegranate, cranberry, grape, and cocoa and these isolates tested for effectiveness to inhibit the activity of -amylase and glucoamylase in vitro. The compositions of the isolates were confirmed by NMR and LC/MS analysis, and tannin-protein interactions were investigated using relevant enzyme assays and differential scanning calorimetry (DSC). The results demonstrated inhibition of each enzyme by each tannin, but with variation in magnitude. In general, larger and more complex tannins, such as those in pomegranate and cranberry, more effectively inhibited the enzymes than did less polymerized cocoa tannins. Interaction of the tannins with the enzymes was confirmed through calorimetric measurements of changes in enzyme thermal stability.

Inhibition of bacterial motility and spreading via release of cranberry derived materials from silicone substrates

Posted
Authors
Chan M, Hidalgo G, Asadishad B, Almeida S, Muja N, Mohammadi MS, Nazhat SN, Tufenkji N
Journal
Colloid Surface B 110:275-80
Abstract

The motility of bacteria plays a key role in their colonization of surfaces during infection. Derivatives of cranberry fruit have been shown to interfere with bacterial motility. Herein, we report on the incorporation of cranberry derived materials (CDMs) into silicone substrates with the aim of impairing bacterial pathogen motility and spreading on the substrate surface. The release of CDMs from the silicone substrates when soaking in an aqueous medium was quantified for a period of 24h. Next, we showed that CDMs released from two silicone substrates remain bioactive as they downregulate the expression of the flagellin gene of two key uropathogens - Escherichia coli CFT073 and Proteus mirabilis HI4320. Furthermore, we demonstrate that CDM-modified silicone inhibits the swarming motility of P. mirabilis, an aggressive swarmer. The bioactive, CDM-modified substrates can find broad applications in the medical device and food industries where the impairment of bacterial colonization of surfaces is of paramount importance.