Health Research

Health Research Library

Search

Microbiome

Displaying 1 - 10 of 11

The Development and Evaluation of a Literature-Based Dietary Index for Gut Microbiota

Posted
Authors
Kase BE, Liese AD, Zhang J, Murphy EA, Zhao L, Steck SE
Journal
Nutrients. 2024 Apr 3
Abstract

The aim of the study was to develop and evaluate a novel dietary index for gut microbiota (DI-GM) that captures dietary composition related to gut microbiota profiles. We conducted a literature review of longitudinal studies on the association of diet with gut microbiota in adult populations and extracted those dietary components with evidence of beneficial or unfavorable effects. Dietary recall data from the National Health and Nutrition Examination Survey (NHANES, 2005–2010, n = 3812) were used to compute the DI-GM, and associations with biomarkers of gut microbiota diversity (urinary enterodiol and enterolactone) were examined using linear regression. From a review of 106 articles, 14 foods or nutrients were identified as components of the DI-GM, including fermented dairy, chickpeas, soybean, whole grains, fiber, cranberries, avocados, broccoli, coffee, and green tea as beneficial components, and red meat, processed meat, refined grains, and high-fat diet (≥40% of energy from fat) as unfavorable components. Each component was scored 0 or 1 based on sex-specific median intakes, and scores were summed to develop the overall DI-GM score. In the NHANES, DI-GM scores ranged from 0–13 with a mean of 4.8 (SE = 0.04). Positive associations between DI-GM and urinary enterodiol and enterolactone were observed. The association of the novel DI-GM with markers of gut microbiota diversity demonstrates the potential utility of this index for gut health-related studies.

Suppression of Helicobacter pylori infection by daily cranberry intake: A double-blind, randomized, placebo-controlled trial

Posted
Authors
Li ZX, Ma JL, Guo Y, Liu WD, Li M, Zhang LF, Zhang Y, Zhou T, Zhang JY, Gao HE, Guo XY, Ye DM, Li WQ, You WC, Pan KF
Journal
Journal of Gastroenterology & Hepatology. 36(4):927-935, 2021 Apr.
Abstract

 

 

BACKGROUND AND AIM: Dietary strategies that contribute to reducing incidence of Helicobacter pylori infection without negative side effects are highly desirable owing to worldwide bacterial prevalence and carcinogenesis potential. The aim of this study was to determine dosage effect of daily cranberry consumption on H. pylori suppression over time in infected adults to assess the potential of this complementary management strategy in a region with high gastric cancer risk and high prevalence of H. pylori infection.

METHODS: This double-blind, randomized, placebo-controlled trial on 522 H. pylori-positive adults evaluated dose-response effects of proanthocyanidin-standardized cranberry juice, cranberry powder, or their placebos on suppression of H. pylori at 2 and 8 weeks by 13 C-urea breath testing and eradication at 45 days post-intervention.

RESULTS: H. pylori-negative rates in placebo, low-proanthocyanidin, medium-proanthocyanidin, and high-proanthocyanidin cranberry juice groups at week 2 were 13.24%, 7.58%, 1.49%, and 13.85% and at week 8 were 7.35%, 7.58%, 4.48%, and 20.00%, respectively. Consumption of high-proanthocyanidin juice twice daily (44 mg proanthocyanidin/240-mL serving) for 8 weeks resulted in decreased H. pylori infection rate by 20% as compared with other dosages and placebo (P < 0.05). Percentage of H. pylori-negative participants increased from 2 to 8 weeks in subjects who consumed 44 mg proanthocyanidin/day juice once or twice daily, showing a statistically significant positive trend over time. Encapsulated cranberry powder doses were not significantly effective at either time point. Overall trial compliance was 94.25%. Cranberry juice and powder were well-tolerated.

CONCLUSIONS: Twice-daily consumption of proanthocyanidin-standardized cranberry juice may help potentiate suppression of H. pylori infection.

 

A Freeze-Dried Cranberry Powder Consistently Enhances SCFA Production and Lowers Abundance of Opportunistic Pathogens In Vitro

Posted
Authors
Khoo, C.; Duysburgh, C.; Marzorati, M.; Van den Abbeele, P.; Zhang, D.
Journal
BioTech 2022, 11, 14. https://doi-org.ezproxy.library.tufts.edu/10.3390/biotech11020014
Abstract

The American cranberry, Vaccinium macrocarpon, contains fibers and (poly)phenols that could exert health-promoting effects through modulation of gut microbiota. This study aimed to investigate how a freeze-dried whole cranberry powder (FCP) modulated metabolite production and microbial composition using both a 48-h incubation strategy and a long-term human gut simulator study with the M-SHIME (Mucosal Simulator of the Human Intestinal Microbial Ecosystem). FCP was repeatedly administered over three weeks. The studies included five and three study subjects, respectively. In both models, FCP significantly increased levels of health-related short-chain fatty acids (SCFA: acetate, propionate and butyrate), while decreased levels of branched-chain fatty acids (markers of proteolytic fermentation). Interestingly, FCP consistently increased luminal Bacteroidetes abundances in the proximal colon of the M-SHIME (+17.5 ± 9.3%) at the expense of Proteobacteria (−10.2 ± 1.5%). At family level, this was due to the stimulation of Bacteroidaceae and Prevotellaceae and a decrease of Pseudomonodaceae and Enterobacteriaceae. Despite of interpersonal differences, FCP also increased the abundance of families of known butyrate producers. Overall, FCP displayed an interesting prebiotic potential in vitro given its selective utilization by host microorganisms and potential health-related effects on inhibition of pathogens and selective stimulation of beneficial metabolites.

 

Cranberry Arabino-Xyloglucan and Pectic Oligosaccharides Induce Lactobacillus Growth and Short-Chain Fatty Acid Production

Posted
Authors
Hotchkiss, Arland T., Jr.; Renye, John A., Jr.; White, Andre K.; Nunez, Alberto; Guron, Giselle K. P.; Chau, Hoa; Simon, Stefanie; Poveda, Carlos; Walton, Gemma; Rastall, Robert; Khoo, Christina
Journal
MICROORGANISMS 10;7:1346. 10.3390/microorganisms10071346
Abstract

Numerous health benefits have been reported from the consumption of cranberry-derived products, and recent studies have identified bioactive polysaccharides and oligosaccharides from cranberry pomace. This study aimed to further characterize xyloglucan and pectic oligosaccharide structures from pectinase-treated cranberry pomace and measure the growth and short-chain fatty acid production of 86 Lactobacillus strains using a cranberry oligosaccharide fraction as the carbon source. In addition to arabino-xyloglucan structures, cranberry oligosaccharides included pectic rhamnogalacturonan I which was methyl-esterified, acetylated and contained arabino-galacto-oligosaccharide side chains and a 4,5-unsaturated function at the non-reducing end. When grown on cranberry oligosaccharides, ten Lactobacillus strains reached a final culture density (Delta OD) >= 0.50 after 24 h incubation at 32 degrees C, which was comparable to L. plantarum ATCC BAA 793. All strains produced lactic, acetic, and propionic acids, and all but three strains produced butyric acid. This study demonstrated that the ability to metabolize cranberry oligosaccharides is Lactobacillus strain specific, with some strains having the potential to be probiotics, and for the first time showed these ten strains were capable of growth on this carbon source. The novel cranberry pectic and arabino-xyloglucan oligosaccharide structures reported here combined with the Lactobacillus strains that can metabolize cranberry oligosaccharides and produce short-chain fatty acids, have excellent potential as health-promoting synbiotics.

 

Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet

Posted
Authors
Medina-Larque, Ana-Sofia; Rodriguez-Daza, Maria-Carolina; Roquim, Marcela; Dudonne, Stephanie; Pilon, Genevieve; Levy, Emile; Marette, Andre; Roy, Denis; Jacques, Helene; Desjardins, Yves
Journal
FRONTIERS IN IMMUNOLOGY 13:871080. 10.3389/fimmu.2022.871080
Abstract

The consumption of plant-based bioactive compounds modulates the gut microbiota and interacts with the innate and adaptive immune responses associated with metabolic disorders. The present study aimed to evaluate the effect of cranberry polyphenols (CP), rich in flavonoids, and agavins (AG), a highly branched agave-derived neo-fructans, on cardiometabolic response, gut microbiota composition, metabolic endotoxemia, and mucosal immunomodulation of C57BL6 male mice fed an obesogenic high-fat and high-sucrose (HFHS) diet for 9 weeks. Interestingly, CP+AG-fed mice had improved glucose homeostasis. Oral supplementation with CP selectively and robustly (five-fold) increases the relative abundance of Akkermansia muciniphila, a beneficial bacteria associated with metabolic health. AG, either alone or combined with CP (CP+AG), mainly stimulated the glycan-degrading bacteria Muribaculum intestinale, Faecalibaculum rodentium, Bacteroides uniformis, and Bacteroides acidifaciens. This increase of glycan-degrading bacteria was consistent with a significantly increased level of butyrate in obese mice receiving AG, as compared to untreated counterparts. CP+AG-supplemented HFHS-fed mice had significantly lower levels of plasma LBP than HFHS-fed controls, suggesting blunted metabolic endotoxemia and improved intestinal barrier function. Gut microbiota and derived metabolites interact with the immunological factors to improve intestinal epithelium barrier function. Oral administration of CP and AG to obese mice contributed to dampen the pro-inflammatory immune response through different signaling pathways. CP and AG, alone or combined, increased toll-like receptor (TLR)-2 (Tlr2) expression, while decreasing the expression of interleukin 1ss (ILss1) in obese mice. Moreover, AG selectively promoted the anti-inflammatory marker Foxp3, while CP increased the expression of NOD-like receptor family pyrin domain containing 6 (Nlrp6) inflammasome. The intestinal immune system was also shaped by dietary factor recognition. Indeed, the combination of CP+AG significantly increased the expression of aryl hydrocarbon receptors (Ahr). Altogether, both CP and AG can shape gut microbiota composition and regulate key mucosal markers involved in the repair of epithelial barrier integrity, thereby attenuating obesity-associated gut dysbiosis and metabolic inflammation and improving glucose homeostasis.

 

Effect of cranberry supplementation on toxins produced by the gut microbiota in chronic kidney disease patients: a pilot randomized placebo-controlled trial.

Posted
Authors
Teixeira, K. T. R.; Moreira, L. de S. G.; Borges, N. A.; Brum, I.; Paiva, B. R. de; Alvarenga, L.; Nakao, L. S.; Leal, V. de O.; Carraro-Eduardo, J. C.; Rodrigues, S. D.; Lima, J. D.; Ribeiro-Alves, M.; Mafra, D.
Journal
Clinical Nutrition ESPEN; 2022. 47:63-69.
Abstract

Background & aims: Patients with Chronic Kidney Disease (CKD) have an imbalance in the gut microbiota that can lead to increase levels of lipopolysaccharides (LPS) and uremic toxins such as indoxyl sulfate (IS), p-cresyl sulfate (p-CS), and indole-3 acetic acid (IAA). Among the therapeutic options for modulating gut microbiota are the bioactive compounds such as polyphenols present in cranberry, fruit with potential antioxidant and anti-inflammatory effects. This clinical trial focuses on evaluating the effects of supplementation with a dry extract of cranberry on plasma levels of LPS and uremic toxins in non-dialysis CKD patients. Methods: It was a randomized, double-blind, placebo-controlled study. Patients were randomized into two groups: the cranberry group received 500 mg of dry cranberry extract (2 times daily), and the placebo group received 500 mg of corn starch (2 times daily) for two months. LPS plasma levels were evaluated by enzyme-linked immunosorbent assay (ELISA) and uremic toxins (IS, p-CS, and IAA) by high-performance liquid chromatography-fluorescence detection. Anthropometric measurements and food intake using the 24-h food recall technique were also evaluated before and after the intervention. Results: Twenty-five participants completed two months of supplementation: 12 patients in the cranberry group (8 women, 56.7 +or- 7.5 years, estimated glomerular filtration rate (eGFR) of 39.2 +or- 21.9 mL/min); 13 patients in the placebo group (9 women, 58.8 +or- 5.1 years, eGFR of 39.7 +or- 12.9 mL/min). As expected, there was a negative association between glomerular filtration rate and p-CS and IS plasma levels at the baseline. No change was observed in the uremic toxins and LPS levels. Conclusion: Cranberry dry extract supplementation for two months did not reduce the LPS and uremic toxins plasma levels produced by the gut microbiota in non-dialysis CKD patients.

Feeding Fiber-Bound Polyphenol Ingredients at Different Levels Modulates Colonic Postbiotics to Improve Gut Health in Dogs

Posted
Authors
Jewell, Dennis E.; Jackson, Matthew I.; Cochrane, Chun-Yen; Badri, Dayakar V.
Journal
ANIMALS 12:5:627. 10.3390/ani12050627
Abstract

Simple Summary Microbes present in the large intestine of humans and companion animals produce bioactive metabolites from host-ingested food. These bioactive metabolites can influence host health. A prior study in dogs that were healthy or had chronic enteritis/gastroenteritis showed that stool quality improved when they ate food containing a fiber bundle made from fibers of pecan shells, flax seed, cranberry, citrus, and beet. In addition, eating food containing the fiber bundle resulted in the gut bacteria shifting from digesting mainly protein to digesting mainly carbohydrates. The present study tested the impact of the fiber bundle at a lower range of concentrations in dogs. Fecal levels of several bioactive metabolites with beneficial antioxidant or anti-inflammatory properties increased after dogs consumed food with the fiber bundle, though no changes in the bacteria or their functional pathways were observed. Stool quality remained in the acceptable range. These results suggest that the gut bacteria were able to digest the fiber bundle to produce beneficial bioactive metabolites to improve host health. This study assessed changes in canine fecal metabolites and microbiota with the consumption of foods with increasing concentrations of a fiber bundle including pecan shells, flax seed, and powders of cranberry, citrus, and beet that was previously shown (at 14% w/w) to improve stool quality, shift fecal bacterial metabolism from proteolysis to saccharolysis, increase abundance of saccharolytic bacteria, and decrease abundance of proteolytic bacteria. In this study, 48 healthy adult dogs were split evenly to consume different inclusion levels (0%, 1%, 2%, and 4%) of the fiber bundle for a 31-day period following a 28-day pre-feed period. Increases from baseline in the fecal short-chain fatty acids butyric acid, valeric acid, and hexanoic acid were observed only in the dogs that consumed the food with the 4% fiber bundle. With addition of any level of the fiber bundle, increases were seen in the polyphenols hesperidin, hesperetin, ponciretin, secoisolariciresinol diglucoside, secoisolariciresinol, and enterodiol. However, fecal microbiota and their metabolism, and stool scores were largely unaffected by the fiber bundle. Overall, addition of the fiber bundle appeared to increase bioactive metabolites of increased antioxidant and anti-inflammatory potency for beneficial to health and, at levels >= 4%, shifted gut bacterial metabolism toward saccharolysis.

 

High polyphenolic cranberry beverage alters specific fecal microbiota but not gut permeability following aspirin challenge in healthy obese adults: a randomized, double-blind, crossover trial.

Posted
Authors
Solch-Ottaiano, R. J.; Judkins, T. C.; Matott, S. H.; McDermott, C. E.; Nieves, C.; Wang Yu; Colee, J.; Tagliamonte, M. S.; Dissanayake, U.; Mai, V.; Percival, S. S.; Langkamp-Henken, B.
Journal
Journal of Functional Foods; 2022. 99.
Abstract

Polyphenol-rich cranberry extracts decrease intestinal inflammation, alter gut microbiota, and decrease intestinal permeability in obese mice, but the effect has not been investigated in adults who are obese. The purpose of this randomized double-blind, cross-over feeding study in obese (BMI = 37.4 +or- 1.2 kg/m2) but otherwise healthy adults (n = 36) 35.4 +or- 1.3 years was to determine the effects of consuming 480 mL of a high polyphenolic cranberry or control beverage daily for 2 weeks on gastrointestinal permeability, markers of inflammation and immune function, and gut microbiota. An acute aspirin challenge was administered prior to assessing intestinal permeability to determine resistance to barrier function compromise. The cranberry beverage did not affect markers of gastrointestinal permeability, inflammation, or immune function. However, fecal Faecalibacterium prausnitzii and Eggerthella lenta increased with consumption of the cranberry beverage. Data suggest that the intervention impacted bacterial communities. A longer intervention may be required to observe beneficial effects on inflammation and gastrointestinal barrier function.

 

High polyphenolic cranberry beverage alters specific fecal microbiota but not gut permeability following aspirin challenge in healthy obese adults: a randomized, double-blind, crossover trial.

Posted
Authors
Solch-Ottaiano, R. J.; Judkins, T. C.; Matott, S. H.; McDermott, C. E.; Nieves, C.; Wang Yu; Colee, J.; Tagliamonte, M. S.; Dissanayake, U.; Mai, V.; Percival, S. S.; Langkamp-Henken, B.
Journal
Journal of Functional Foods; 2022. 99.
Abstract

Polyphenol-rich cranberry extracts decrease intestinal inflammation, alter gut microbiota, and decrease intestinal permeability in obese mice, but the effect has not been investigated in adults who are obese. The purpose of this randomized double-blind, cross-over feeding study in obese (BMI = 37.4 +or- 1.2 kg/m2) but otherwise healthy adults (n = 36) 35.4 +or- 1.3 years was to determine the effects of consuming 480 mL of a high polyphenolic cranberry or control beverage daily for 2 weeks on gastrointestinal permeability, markers of inflammation and immune function, and gut microbiota. An acute aspirin challenge was administered prior to assessing intestinal permeability to determine resistance to barrier function compromise. The cranberry beverage did not affect markers of gastrointestinal permeability, inflammation, or immune function. However, fecal Faecalibacterium prausnitzii and Eggerthella lenta increased with consumption of the cranberry beverage. Data suggest that the intervention impacted bacterial communities. A longer intervention may be required to observe beneficial effects on inflammation and gastrointestinal barrier function.

 

Suppression of Helicobacter pylori infection by daily cranberry intake: A double-blind, randomized, placebo-controlled trial.

Posted
Authors
Li ZX; Ma JL; Guo Y; Liu WD; Li M; Zhang LF; Zhang Y; Zhou T; Zhang JY; Gao HE; Guo XY; Ye DM; Li WQ; You WC; Pan KF.
Journal
Journal of Gastroenterology & Hepatology. 2020 Aug 11
Abstract

BACKGROUND AND AIM: Dietary strategies that contribute to reducing incidence of Helicobacter pylori infection without negative side effects are highly desirable owing to worldwide bacterial prevalence and carcinogenesis potential. The aim of this study was to determine dosage effect of daily cranberry consumption on H. pylori suppression over time in infected adults to assess the potential of this complementary management strategy in a region with high gastric cancer risk and high prevalence of H. pylori infection. 

METHODS: This double-blind, randomized, placebo-controlled trial on 522 H. pylori-positive adults evaluated dose-response effects of proanthocyanidin-standardized cranberry juice, cranberry powder, or their placebos on suppression of H. pylori at 2 and 8 weeks by 13 C-urea breath testing and eradication at 45 days post-intervention. 

RESULTS: H. pylori-negative rates in placebo, low-proanthocyanidin, medium-proanthocyanidin, and high-proanthocyanidin cranberry juice groups at week 2 were 13.24%, 7.58%, 1.49%, and 13.85% and at week 8 were 7.35%, 7.58%, 4.48%, and 20.00%, respectively. Consumption of high-proanthocyanidin juice twice daily (44 mg proanthocyanidin/240-mL serving) for 8 weeks resulted in decreased H. pylori infection rate by 20% as compared with other dosages and placebo (P < 0.05). Percentage of H. pylori-negative participants increased from 2 to 8 weeks in subjects who consumed 44 mg proanthocyanidin/day juice once or twice daily, showing a statistically significant positive trend over time. Encapsulated cranberry powder doses were not significantly effective at either time point. Overall trial compliance was 94.25%. Cranberry juice and powder were well-tolerated. 

CONCLUSIONS: Twice-daily consumption of proanthocyanidin-standardized cranberry juice may help potentiate suppression of H. pylori infection.