Health Research

Health Research Library

Search

North American cranberry (Vaccinium macrocarpon) stimulates apoptotic pathways in DU145 human prostate cancer cells in vitro

Posted
Authors
MacLean MA, Scott BE, Deziel BA, Nunnelley MC, Liberty AM, Gottschall-Pass KT, Neto CC, Hurta RA
Journal
Nutr Cancer. 63(1):109-20
Abstract

Diets rich in fruits and vegetables have been shown to improve patient prognosis in a variety of cancers, a benefit partly derived from phytochemicals, many of which target cell death pathways in tumor cells. Cranberries (Vaccinium macrocarpon) are a phytochemical-rich fruit containing a variety of polyphenolic compounds. As flavonoids have been shown to induce apoptosis in human tumor cells, this study investigated the hypothesis that cranberry-mediated cytotoxicity in DU145 human prostate adenocarcinoma cells involves apoptosis. The results showed that induction of apoptosis in these cells occurred in response to treatment with whole cranberry extract and occurred through caspase-8 mediated cleavage of Bid protein to truncated Bid resulting in cytochrome-C release from the mitochondria. Subsequent activation of caspase-9 ultimately resulted in cell death as characterized by DNA fragmentation. Increased Par-4 protein expression was observed, and this is suggested to be at least partly responsible for caspase-8 activation. Proanthocyanidin-enriched and flavonol-enriched fractions of cranberry also increased caspase-8 and caspase-9 activity, suggesting that these compounds play a possible role in apoptosis induction. These findings indicate that cranberry phytochemicals can induce apoptosis in prostate cancer cells in vitro, and these findings further establish the potential value of cranberry phytochemicals as possible agents against prostate cancer.

Oral consumption of cranberry juice cocktail inhibits molecular-scale adhesion of clinical uropathogenic Escherichia coli.

Posted
Authors
Tao YY, Pinzon-Arango PA, Howell AB, Camesano TA
Journal
J Med Food 14: 7/8, 739-745
Abstract

Cranberry juice cocktail (CJC) has been shown to inhibit the formation of biofilm by uropathogenic Escherichia coli. In order to investigate whether the anti-adhesive components could reach the urinary tract after oral consumption of CJC, a volunteer was given 16 oz of either water or CJC. Urine samples were collected at 0, 2, 4, 6, and 8 hours after consumption of a single dose. The ability of compounds in the urine to influence bacterial adhesion was tested for six clinical uropathogenic E. coli strains, including four P-fimbriated strains (B37, CFT073, BF1023, and J96) and two strains not expressing P-fimbriae but exhibiting mannose-resistant hemagglutination (B73 and B78). A non-fimbriated strain, HB101, was used as a control. Atomic force microscopy (AFM) was used to measure the adhesion force between a silicon nitride probe and bacteria treated with urine samples. Within 2 hours after CJC consumption, bacteria of the clinical strains treated with the corresponding urine sample demonstrated lower adhesion forces than those treated with urine collected before CJC consumption. The adhesion forces continued decreasing with time after CJC consumption over the 8-hour measurement period. The adhesion forces of bacteria after exposure to urine collected following water consumption did not change. HB101 showed low adhesion forces following both water and CJC consumption, and these did not change over time. The AFM adhesion force measurements were consistent with the results of a hemagglutination assay, confirming that oral consumption of CJC could act against adhesion of uropathogenic E. coli.

Proanthocyanidin-rich Extracts from Cranberry Fruit ( Vaccinium macrocarpon Ait.) Selectively Inhibit the Growth of Human Pathogenic Fungi Candida spp. and Cryptococcus neoformans.

Posted
Authors
Patel KD. Scarano FJ. Kondo M. Hurta RA. Neto CC.
Journal
J Agric Food Chem 59(24):12864-73
Abstract

Cranberry ( Vaccinium macrocarpon ) has been shown in clinical studies to reduce infections caused by Escherichia coli and other bacteria, and proanthocyanidins are believed to play a role. The ability of cranberry to inhibit the growth of opportunistic human fungal pathogens that cause oral, skin, respiratory, and systemic infections has not been well-studied. Fractions from whole cranberry fruit were screened for inhibition of five Candida species and Cryptococcus neoformans , a causative agent of fungal meningitis. Candida glabrata , Candida lusitaniae , Candida krusei , and Cryptococcus neoformans showed significant susceptibility to treatment with cranberry proanthocyanidin fractions in a broth microdilution assay, with minimum inhibitory concentrations as low as 1 mug/mL. MALDI-TOF MS analysis of subfractions detected epicatechin oligomers of up to 12 degrees of polymerization. Those containing larger oligomers caused the strongest inhibition. This study suggests that cranberry has potential as an antifungal agent.

Strawberries, Blueberries, and Cranberries in the Metabolic Syndrome: Clinical

Posted
Authors
Basu A, Lyons TJ
Journal
J Agric Food Chem Nov 29. [Epub ahead of print]
Abstract

Emerging science supports therapeutic roles of strawberries, blueberries, and cranberries in metabolic syndrome, a prediabetic state characterized by several cardiovascular risk factors. Interventional studies reported by our group and others have demonstrated the following effects: strawberries lowering total and LDL-cholesterol, but not triglycerides, and decreasing surrogate biomarkers of atherosclerosis (malondialdehyde and adhesion molecules); blueberries lowering systolic and diastolic blood pressure and lipid oxidation and improving insulin resistance; and low-calorie cranberry juice selectively decreasing biomarkers of lipid oxidation (oxidized LDL) and inflammation (adhesion molecules) in metabolic syndrome. Mechanistic studies further explain these observations as up-regulation of endothelial nitric oxide synthase activity, reduction in renal oxidative damage, and inhibition of the activity of carbohydrate digestive enzymes or angiotensin-converting enzyme by these berries. These findings need confirmation in future studies with a focus on the effects of strawberry, blueberry, or cranberry intervention in clinical biomarkers and molecular mechanisms underlying the metabolic syndrome.

The effect of nondialyzable material (NDM) cranberry extract on formation of contact lens biofilm by Staphylococcus epidermidis

Posted
Authors
Leshem R, Maharshak I, Ben Jacob E, Ofek I, Kremer I
Journal
Invest Ophthalmol Vis Sci 52(7):4929-34
Abstract

PURPOSE: To assess the effects of NDM from cranberries on Staphylococcus epidermidis biofilm formed on soft contact lenses.

METHODS: Soft contact lenses were incubated in Tryptic Soy Broth (TSB) together with S. epidermidis (ATCC35984/RP62A) and various concentrations of NDM, and inspected by scanning electron and confocal microscopy. The TSB was collected after sonification and monitored turbidometrically.

RESULTS: NDM at >=500 mug/mL concentration caused a significant (P 0.01) reduction of biofilm. Scanning electron microscopy of biofilm in the presence of 500 to 1000 mug/mL NDM confirmed these results. In control lenses, multilayered mushroom-shaped biofilm and complete coverage of the lens surface were seen, whereas after incubation with 500 mug NDM per mL TSB, the biofilm was thinner with smaller protuberances, and exposed lens surface was partially seen. In samples incubated with 1000 mug NDM per mL TSB, the lens surface was clearly seen between sporadic microcolonies.

CONCLUSIONS: NDM reduces formation of biofilm on soft contact lenses. This has important implications for the prevention of contact lens-related corneal infections caused by S. epidermidis.

The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials

Posted
Authors
O'May C, Tufenkji N
Journal
Appl Environ Microbiol 77(9):3061-7
Abstract

Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds.

Ursolic acid and its esters: occurrence in cranberries and other Vaccinium fruit and effects on matrix metalloproteinase activity in DU145 prostate tumor cells.

Posted
Authors
Kondo M, MacKinnon SL, Craft CC, Matchett MD, Hurta RAR, Neto CC
Journal
J Sci Food Agric 91: 5, 789-796
Abstract

Ursolic acid and its cis- and trans-3-O-p-hydroxycinnamoyl esters have been identified as constituents of American cranberries (Vaccinium macrocarpon), which inhibit tumor cell proliferation. Since the compounds may contribute to berry anticancer properties, their content in cranberries, selected cranberry products, and three other Vaccinium species (V. oxycoccus, V. vitis-idaea and V. angustifolium) was determined by liquid chromatography-mass spectroscopy. The ability of these compounds to inhibit growth in a panel of tumor cell lines and inhibit matrix metalloproteinase (MMP) activity associated with tumor invasion and metastasis was determined in DU145 prostate tumor cells. RESULTS: The highest content of ursolic acid and esters was found in V. macrocarpon berries (0.460-1.090 g ursolic acid and 0.040-0.160 g each ester kg-1 fresh weight). V. vitis-idaea and V. angustifolium contained ursolic acid (0.230-0.260 g kg-1), but the esters were not detected. V. oxycoccus was lowest (0.129 g ursolic acid and esters per kg). Ursolic acid content was highest in cranberry products prepared from whole fruit. Ursolic acid and its esters inhibited tumor cell growth at micromolar concentrations, and inhibited MMP-2 and MMP-9 activity at concentrations below those previously reported for cranberry polyphenolics. CONCLUSION: Cranberries (V. macrocarpon) were the best source of ursolic acid and its esters among the fruit and products tested. These compounds may limit prostate carcinogenesis through matrix metalloproteinase inhibition.

Warfarin-cranberry juice interaction.

Posted
Authors
Hamann GL, Campbell JD, George CM
Journal
Ann Pharmacother. 45(3):e17
Abstract

OBJECTIVE: To report a case of warfarin-cranberry juice interaction, which resulted in an international normalized ratio (INR) elevation on 2 separate occasions.
CASE SUMMARY: A 46-year-old female was receiving a total weekly dose of 56 mg of warfarin. During the 4 months prior to the incident INR, her average INR was 2.0, with a range of 1.6-2.2, while taking the same weekly dose of warfarin. Her INR increased to 4.6 after drinking approximately 1.5 quarts (1420 mL) of cranberry juice cocktail daily for 2 days. Her INR 14 days later without cranberry juice cocktail consumption was 2.3. For the next 3 months, while taking warfarin 56 mg per week, her average INR was 2.1, with a range of 1.4-2.5. At a subsequent visit, after drinking approximately 2 quarts (1893 mL) of cranberry juice cocktail daily for 3-4 days, her INR had increased to 6.5. Her INR after holding warfarin for 3 days was 1.86. Her INR 7 days after resuming the weekly dose of warfarin 56 mg was 3.2. During both of the elevated INR episodes, no other factors were identified that would have resulted in an elevated INR, such as drug, herbal, disease, or other food interactions. An objective causality assessment revealed the interaction was highly probable.
DISCUSSION: Warfarin is the most commonly used anticoagulant for chronic therapy. There have been several case reports of cranberry juice or cranberry sauce potentiating the effects of warfarin by elevating the INR; however, clinical trials evaluating this interaction have failed to demonstrate a significant effect on an INR.
CONCLUSIONS: Our case report describes INR elevations in a patient previously stable on warfarin after ingestion of cranberry juice cocktail daily for several days. This elevation occurred on 2 separate occasions, which distinguishes our case from other published literature.

Do Escherichia coli extract and cranberry exert preventive effects on chronic bacterial prostatitis? Pilot study using an animal model

Posted
Authors
Kim SH, Ha US, Lee HR, Sohn DW, Lee SJ, Kim HW, Han CH, Lee CB, Cho YH
Journal
J Infect Chemother 17: 3, 322-326
Abstract

Traditional first-line treatment of chronic bacterial prostatitis (CBP) is administration of empirical antibiotics. However, the efficacy rate is low and long-term antibiotic therapy can result in adverse events and bacterial resistance. For these reasons, a new treatment or preventive modality that can replace traditional antibiotic therapy is required. There are several reports that E. coli extract has a preventive effect on recurrent urinary tract infection (UTI). Cranberries are also known to have beneficial effects in preventing UTI. To evaluate the preventive effect of E. coli extract and cranberries on CBP, 48 rats were randomly divided into 4 groups; control, ciprofloxacin, E. coli extract, and cranberry groups. All drug treatments were conducted for 3 weeks, and then we developed a CBP rat model. After 4 weeks, the results of microbiological culture of prostate and urine samples as well as histological findings for the prostate were analyzed for each group. The infection rate in the ciprofloxacin group was significantly lower than that in the control group. The microbiological cultures of the prostate and urine samples demonstrated reduced bacterial growth in all experimental groups compared with the control group. Histopathologic examination showed significantly decreased prostatic inflammation in all groups compared with the control group. These results suggest that E. coli extract has a potential preventive effect on the development of CBP, and cranberry also exhibits promising activity in this context

Effect of juice processing on cranberry antibacterial properties

Posted
Authors
Cote J, Caillet S, Dussault D, Sylvain JF, Lacroix M
Journal
Food Res Int 44: 9, 2922-2929
Abstract

The effects of the industrial juice process on the ability of neutralized cranberry samples and extracts (polar, apolar and anthocyanins) to inhibit the growth of Enterococcus faecium resistant to vancomycin (ERV), Escherichia coli O157:H7 EDL 933, E. coli ATCC 25922, Listeria monocytogenes HPB 2812, Pseudomonas aeruginosa ATCC 15442, Salmonella Typhimurium SL1344 and Staphylococcus aureus ATCC 29213 were investigated. The juice process appeared to have a general enhancing effect on the antibacterial properties of cranberry polar and anthocyanin extracts. The lowest minimum inhibitory concentrations (MICs) (1.80-7.0 micro g phenol/well) were obtained when S. aureus, S. Typhimurium, and ERV were exposed to the juice concentrate. The growth of P. aeruginosa, L. monocytogenes, E. coli ATCC, and E. coli O157:H7 was not inhibited by the juice concentrate, but did show sensitivity (maximal tolerated concentrations of 0.007-0.4 micro g phenol/well). The lowest MICs (22.6-90.5 micro g phenol/well) for P. aeruginosa, S. aureus, S. Typhimurium, and ERV were observed when they were exposed to the cranberry anthocyanin extract obtained from cranberry pomace. The results also showed a negative effect of the juice process on the antibacterial properties of the cranberry apolar extracts: the one obtained from frozen cranberries was most efficient against P. aeruginosa, S. aureus, L. monocytogenes and S. Typhimirium (MIC of 45.50 micro g phenol/well). The tested bacteria showed the greatest resistance toward the cranberry extracts obtained from the mash and the macerated and depectinized mash