Health Research

Health Research Library

Search

Oncology/Anti-Cancer

Displaying 1 - 10 of 69

A Review with a Focus on Vaccinium-Berries-Derived Bioactive Compounds for the Treatment of Reproductive Cancers

Posted
Authors
Alsharairi NA
Journal
Plants (Basel). 2024 Apr 8;13(7):1047. doi: 10.3390/plants13071047. PMID: 38611574; PMCID: PMC11013621
Abstract

Cancers of the reproductive organs, including prostate, bladder, ovarian, and cervical cancers, are considered the most common causes of death in both sexes worldwide. The genus Vaccinium L. (Ericaceae) comprises fleshy berry crop species, including cranberries, blueberries, lingonberries, bilberries, and bog bilberries, and are widely distributed in many countries. Flavonols, anthocyanins (ACNs), proanthocyanidins (PACs), and phenolic acids are the most bioactive compounds naturally found in Vaccinium berries and have been extensively used as anticancer agents. However, it remains uncertain whether Vaccinium bioactives have a therapeutic role in reproductive cancers (RCs), and how these bioactives could be effective in modulating RC-related signalling pathways/molecular genes. Therefore, this article aims to review existing evidence in the PubMed/MEDLINE database on Vaccinium berries’ major bioactive compounds in RC treatment and unravel the mechanisms underlying this process.

Clinical Potential of Fruit in Bladder Cancer Prevention and Treatment

Posted
Authors
Wigner P, Bijak M, Saluk-Bijak J
Journal
Nutrients. 2022 Mar 8;14(6):1132. doi: 10.3390/nu14061132. PMID: 35334790; PMCID: PMC8951059
Abstract

Bladder cancer (BC) is the most common tumor of the urinary system in the world. Moreover, despite using anticancer therapies, BC is also characterized by a high recurrence risk. Among numerous risk factors, cigarette smoking, occupational exposure to certain aromatic compounds, and genetic factors contribute most strongly to BC development. However, the epidemiological data to date suggests that diet quality may influence some carcinogenic factors of BC and, therefore, might have a preventative effect. Adequate consumption of selected fruits with scientifically proven properties, including pomegranates and cranberries, can significantly reduce the risk of developing BC, even in those at risk. Therefore, in this article, we aim to elucidate, using available literature, the role of fruits, including pomegranates, cranberries, citrus fruits, cactus pears, and apples, in BC prevention and treatment. Previous data indicate the role of compounds in the above-mentioned fruits in the modulation of the signaling pathways, including cell proliferation, cell growth, cell survival, and cell death. 

Cranberry Proanthocyanidins Mitigate Reflux-Induced Transporter Dysregulation in an Esophageal Adenocarcinoma Model

Posted
Authors
Zhang Y, Weh KM, Tripp BA, Clarke JL, Howard CL, Sunilkumar S, Howell AB, Kresty LA
Journal
Pharmaceuticals (Basel). 2023 Dec 7;16(12):1697. doi: 10.3390/ph16121697. PMID: 38139823; PMCID: PMC10747310
Abstract

We recently reported that cranberry proanthocyanidins (C-PACs) inhibit esophageal adenocarcinoma (EAC) by 83% through reversing reflux-induced bacterial, inflammatory and immune-implicated proteins and genes as well as reducing esophageal bile acids, which drive EAC progression. This study investigated whether C-PACs’ mitigation of bile reflux-induced transporter dysregulation mechanistically contributes to EAC prevention. RNA was isolated from water-, C-PAC- and reflux-exposed rat esophagi with and without C-PAC treatment. Differential gene expression was determined by means of RNA sequencing and RT-PCR, followed by protein assessments. The literature, coupled with the publicly available Gene Expression Omnibus dataset GSE26886, was used to assess transporter expression levels in normal and EAC patient biopsies for translational relevance. Significant changes in ATP-binding cassette (ABC) transporters implicated in therapeutic resistance in humans (i.e., Abcb1Abcb4Abcc1Abcc3Abcc4Abcc6 and Abcc10) and the transport of drugs, xenobiotics, lipids, and bile were altered in the reflux model with C-PACs’ mitigating changes. Additionally, C-PACs restored reflux-induced changes in solute carrier (SLC), aquaporin, proton and cation transporters (i.e., Slc2a1Slc7a11Slc9a1Slco2a1 and Atp6v0c). This research supports the suggestion that transporters merit investigation not only for their roles in metabolism and therapeutic resistance, but as targets for cancer prevention and targeting preventive agents in combination with chemotherapeutics.

Prebiotic proanthocyanidins inhibit bile reflux-induced esophageal adenocarcinoma through reshaping the gut microbiome and esophageal metabolome

Posted
Authors
Weh KM, Howard CL, Zhang Y, Tripp BA, Clarke JL, Howell AB, Rubenstein JH, Abrams JA, Westerhoff M, Kresty LA
Journal
JCI Insight. 2024 Feb 8;9(6):e168112. doi: 10.1172/jci.insight.168112. PMID: 38329812; PMCID: PMC11063939
Abstract

The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammation-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett’s esophagus, and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome–esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague-Dawley rats, with or without reflux induction, received water or C-PAC ad libitum (700 μg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/TP53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Streptococcus parasanguinisEscherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory, and immune-implicated proteins and genes, including Ccl4Cd14CrpCxcl1Il6Il1bLbpLcn2Myd88Nfkb1Tlr2, and Tlr4, aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe, promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation, and cellular damage.

Ursolic Acid against Prostate and Urogenital Cancers: A Review of In Vitro and In Vivo Studies

Posted
Authors
Kornel A, Nadile M, Retsidou MI, Sakellakis M, Gioti K, Beloukas A, Sze NSK, Klentrou P, Tsiani E
Journal
Int J Mol Sci. 2023 Apr 18;24(8):7414. doi: 10.3390/ijms24087414. PMID: 37108576; PMCID: PMC10138876
Abstract

Prostate cancer is the second most diagnosed form of cancer in men worldwide and accounted for roughly 1.3 million cases and 359,000 deaths globally in 2018, despite all the available treatment strategies including surgery, radiotherapy, and chemotherapy. Finding novel approaches to prevent and treat prostate and other urogenital cancers effectively is of major importance. Chemicals derived from plants, such as docetaxel and paclitaxel, have been used in cancer treatment, and in recent years, research interest has focused on finding other plant-derived chemicals that can be used in the fight against cancer. Ursolic acid, found in high concentrations in cranberries, is a pentacyclic triterpenoid compound demonstrated to have anti-inflammatory, antioxidant, and anticancer properties. In the present review, we summarize the research studies examining the effects of ursolic acid and its derivatives against prostate and other urogenital cancers. Collectively, the existing data indicate that ursolic acid inhibits human prostate, renal, bladder, and testicular cancer cell proliferation and induces apoptosis. A limited number of studies have shown significant reduction in tumor volume in animals xenografted with human prostate cancer cells and treated with ursolic acid. More animal studies and human clinical studies are required to examine the potential of ursolic acid to inhibit prostate and other urogenital cancers in vivo. 

Cranberry extract is a potent radiosensitizer for glioblastoma

Posted
Authors
Bai Qian, Hunzeker, Z. E., Zhu ZiWen, Lequio, M., Willson, C. M., Xiao HuaPing, Wakefield, M. R., Fang YuJiang
Journal
Anticancer Research 2021. 41(7):3337-3341.
Abstract

Background/Aim: Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive type of primary brain tumor and a cornerstone in its treatment is radiotherapy (RT). However, RT for GBM is largely ineffective at clinically safe doses, thus, the study of radiosensitizers is of great significance.Materials and Methods: With accumulating evidence for the anticancer effect of compounds from cranberry, this study was designed to investigate if cranberry extract (CE) sensitizes GBM to RT in the widely used human glioblastoma cell line U87. We utilized clonogenic survival assays, cell proliferation assays, and caspase-3 activity kits. Potential proliferative and apoptotic molecular mechanisms were evaluated by reverse transcription-polymerase chain reaction.Results: We found that CE alone had little effect on the survival of U87 cells. However, RT supplemented by CE significantly inhibited proliferation and promoted apoptosis of U87 cells when compared with RT alone. The proliferation-inhibitory effect of RT/CE might be attributable to the up-regulation of p21, along with the down-regulation of cyclin B and cyclin-dependent kinase 4. This pro-apoptotic effect might additionally be attributable to the down-regulation of surviving.Conclusion: These results warrant further study of the potential radiosensitizing capacity of CE in glioblastoma and other cancer types.

Cytotoxic effect of multifruit polyphenol preparation on human breast cancer cell lines

Posted
Authors
Ziaja-Soltys, M., Szwajgier, D., Kukula-Koch, W.
Journal
Emirates Journal of Food and Agriculture 2021. 33(4):320-327
Abstract

Natural compounds are extensively used in the treatment of various diseases. Regular consumption of polyphenols plays an important role in the protection of health by reducing the risk of degenerative diseases, including cancer. The evaluation of the cytotoxic effect of the newly obtained multifruit polyphenolic preparation (composed of seven fruit) on T47D and MCF-7 breast cancer cells and MCF-12A normal cells. The PP was produced on the basis of combined ultrafiltrates obtained from chokeberry, raspberry, wild strawberry, apricot, peach, bilberry, and cranberry. The experiments were performed using human mammary gland cancer cell lines T47D (ductal cancer) and MCF-7 (adenocarcinoma) and normal breast cell line MCF-12A. Chromatographic techniques confirmed the highest contribution of cyanidin 3-O-glucoside, p-coumaroyl glucoside and chlorogenic acid in the PP. The PP exhibited dose-dependent cytotoxic effects towards MCF-7 and T47D cancer cell lines (IC50=1.2 g.cm-3) and MCF-12A cells (IC50=0.6 g.cm-3). The MTT cytotoxicity assay and microscopic observations confirmed the cytopathic effect of the PP on cell lines. It is supposed that berry polyphenols interfered with estrogen receptors leading to changes in the production of paracrine growth factors and therefore, PP was less cytotoxic towards the MCF-7 and T47D cell lines than against the MCF-12A cell line.

 

Cranberry Polyphenols in Esophageal Cancer Inhibition: New Insights

Posted
Authors
Weh, Katherine M.; Zhang, Yun; Howard, Connor L.; Howell, Amy B.; Clarke, Jennifer L.; Kresty, Laura A.
Journal
NUTRIENTS 14;5:969. 10.3390/nu14050969
Abstract

Esophageal adenocarcinoma (EAC) is a cancer characterized by rapidly rising incidence and poor survival, resulting in the need for new prevention and treatment options. We utilized two cranberry polyphenol extracts, one proanthocyanidin enriched (C-PAC) and a combination of anthocyanins, flavonoids, and glycosides (AFG) to assess inhibitory mechanisms utilizing premalignant Barrett's esophagus (BE) and EAC derived cell lines. We employed reverse phase protein arrays (RPPA) and Western blots to examine cancer-associated pathways and specific signaling cascades modulated by C-PAC or AFG. Viability results show that C-PAC is more potent than AFG at inducing cell death in BE and EAC cell lines. Based on the RPPA results, C-PAC significantly modulated 37 and 69 proteins in JH-EsoAd1 (JHAD1) and OE19 EAC cells, respectively. AFG treatment significantly altered 49 proteins in both JHAD1 and OE19 cells. Bioinformatic analysis of RPPA results revealed many previously unidentified pathways as modulated by cranberry polyphenols including NOTCH signaling, immune response, and epithelial to mesenchymal transition. Collectively, these results provide new insight regarding mechanisms by which cranberry polyphenols exert cancer inhibitory effects targeting EAC, with implications for potential use of cranberry constituents as cancer preventive agents.

 

Evaluation of Anti-cancer Activities of Cranberries Juice Concentrate in Osteosarcoma Cell Lines (MG-63)

Posted
Authors
Hattiholi, Aishwarya; Tendulkar, Shivani; Kumbar, Vijay; Rao, Malleswara; Kugaji, Manohar; Muddapur, Uday; Bhat, Kishore
Journal
INDIAN JOURNAL OF PHARMACEUTICAL EDUCATION AND RESEARCH 56;4:1141-9. 10.5530/ijper.56.4.195
Abstract

Aim/Background: Osteosarcoma is one of the prevalent cancers occurring mostly in adolescents and has a high risk of malignancy. With complications involved in the current treatment strategies, alternates including the use of phytochemicals have gained fame. Cranberries are known for their exceptional health benefits and have been explored for their effective activities in various cancers. The current study aimed at evaluating the anti-cancer properties of cranberry juice concentrate (CJC) on MG-63 cell line for human osteosarcoma, by investigating its apoptotic activity through changes in cell viability and mitochondrial membrane potential. Materials and Methods: Cranberry juice concentrate was obtained by pulverization and lyophilization. The MG-63 cells were treated with 12.5-800 mu g/mL of the CJC and incubated for 24, 48, and 72 hr. The percentage cell viability and IC50 values were obtained. The mitochondrial membrane potential and nuclear changes were examined. The induction of apoptosis was studied by flow cytometer using BD cell Quest 7.5.3 software. GraphPad Prism was used for statistical analysis with significant p-value at <0.05. Results: The IC50 values obtained for CJC were 847.9, 637.4, and 440.6 mu g/mL for 24, 48, and 72 hr respectively. Change in the mitochondrial membrane potential and nuclear morphology was observed following incubation with CJC. Flow cytometric analysis shows cells detected at early and late apoptoic stages after treatment with CJC. Conclusion: Our result suggests that CJC has significant effects on MG-63 osteosarcoma cells and can be considered to supplement conventional therapeutic strategies.

 

Bioactive Components of Polyphenol-Rich and Non-Polyphenol-Rich Cranberry Fruit Extracts and Their Chemopreventive Effects on Colitis-Associated Colon Cancer

Posted
Authors
Wu X; Xue L; Tata A; Song M; Neto CC; Xiao H.
Journal
Journal of Agricultural & Food Chemistry. 68(25):6845-6853,
Abstract

Cranberries contain various constituents relevant to human health. Our previous study demonstrated the chemopreventive effects of whole cranberry against colon cancer in mice. In order to determine the role of different cranberry secondary metabolites in inhibiting colon cancer, cranberry ethyl acetate extract (EAE) and polyphenol extract (PPE) were obtained. The free-radical scavenging activities and chemical composition of the cranberry extracts were determined. EAE consisted of triterpenes and sterols and a trace amount of proanthocyanidins. PPE mainly contained polyphenol with a trace amount of triterpenes. The chemopreventive effects of orally administered EAE and PPE on colitis-associated colon carcinogenesis were determined in mice. Dietary EAE and PPE significantly suppressed tumor metrics without noticeable adverse effects. Gene expression levels of key proinflammatory cytokines were also attenuated by EAE and PPE in the mouse colon. In conclusion, the novel cranberry extracts may offer an efficacious and safe means to prevent colonic tumorigenesis in humans.