Health Research

Health Research Library

Search

Oncology/Anti-Cancer

Displaying 61 - 64 of 64

Cranberry phytochemical extract inhibits SGC-7901 cell growth and human tumor xenografts in Balb/c nu/nu mice

Posted
Authors
Liu M, Lin LQ, Song BB, Wang LF, Zhang CP, Zhao JL, Liu JR
Journal
J Agric Food Chem 57(2):762-8
Abstract

Cranberry extract possesses potent antioxidant capacity and antiproliferative activity against cancer in vitro and in vivo. The objectives of this study were to determine whether the cranberry extract inhibited proliferation of human gastric cancer SGC-7901 cells and human gastric tumor xenografts in the Balb/c nu/nu mouse. Cranberry extract at doses of 0, 5, 10, 20, and 40 mg/mL significantly inhibited proliferation of SGC-7901 cells, and this suppression was partly attributed to decreased PCNA expression and apoptosis induction. In a human tumor xenograft model, the time of human gastric tumor xenografts in the mouse was delayed in a dose-dependent manner. A dose-response inhibition was also observed in the averages of size, weight, and volume of tumor xenografts in the mouse between the control and cranberry-treated groups. These results demonstrate fresh cranberries to be a chemopreventive reagent.

Cranberry phytochemical extracts induce cell cycle arrest and apoptosis in human MCF-7 breast cancer cells.

Posted
Authors
Sun J, Hai Liu R.
Journal
Cancer Lett 241(1):124-34
Abstract

Breast cancer is the most commonly diagnosed cancer in women in the US and is one of the leading causes of death due to cancer. Epidemiological studies have consistently suggested the inverse association between cancer risk and intake of fruits and vegetables. These health benefits have been linked to the additive and synergistic combination of phytochemicals in fruits and vegetables. Cranberries have been shown to possess anti-carcinogenic activities such as inhibition of growth of several cancer cell lines, and inhibition of ornithine decarboxylase (ODC) activity in vitro. However, the molecular mechanisms of the anti-cancer properties of cranberry phytochemical extracts have not been completely understood. Our data showed that cranberry phytochemical extracts significantly inhibited human breast cancer MCF-7 cell proliferation at doses of 5 to 30mg/mL (P<0.05). Apoptotic induction in MCF-7 cells was observed in a dose-dependent manner after exposure to cranberry phytochemical extracts for 4h. Cranberry phytochemical extracts at a dose of 50mg/mL resulted in a 25% higher ratio of apoptotic cells to total cells as compared to the control groups (P<0.05). Cranberry phytochemical extracts at doses from 10 to 50mg/mL significantly arrested MCF-7 cells at G0/G1 phase (P<0.05). A constant increasing pattern of the G1/S index was observed in the cranberry extract treatment group while the G1/S ratio of the control group decreased concomitantly between 10 and 24h treatment. After 24-h exposure to cranberry extracts, the G1/S index of MCF-7 cells was approximately 6 times higher than that of the control group (P<0.05). These results suggest that cranberry phytochemical extracts possess the ability to suppress the proliferation of human breast cancer MCF-7 cells and this suppression is at least partly attributed to both the initiation of apoptosis and the G1 phase arrest.

Cranberry proanthocyanidins are cytotoxic to human cancer cells and sensitize platinum-resistant ovarian cancer cells to paraplatin

Posted
Authors
Singh AP, Singh RK, Kim KK, Satyan KS, Nussbaum R, Torres M, Brard L and Vorsa N
Journal
Phytother Res 23(8):1066-74
Abstract

Polyphenolic extracts of the principal flavonoid classes present in cranberry were screened in vitro for cytotoxicity against solid tumor cells lines, identifying two fractions composed principally of proanthocyanidins (PACs) with potential anticancer activity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analysis of the proanthocyanidins (PACs) fractions indicated the presence of A-type PACs with 1-4 linkages containing between 2-8 epicatechin units with a maximum of 1 epigallocatechin unit. PACs exhibited in vitro cytotoxicity against platinum-resistant human ovarian, neuroblastoma and prostate cancer cell lines (IC50 = 79-479 microg/mL) but were non-cytotoxic to lung fibroblast cells (IC50 > 1000 microg/ml). SKOV-3 ovarian cancer cells treated with PACs exhibited classic apoptotic changes. PACs acted synergistically with paraplatin in SKOV-3 cells. Pretreatment of SKOV-3 cells with PACs (106 microg/ml) resulted in a significant reduction of the paraplatin IC50 value. Similarly, in a BrdU incorporation assay, co-treatment of SKOV-3 cells with PACs and paraplatin revealed reduced cell proliferation at lower concentrations than with either individually. In SKOV-3 cell cultures co-treated with PAC-1 and paraplatin, an HPLC analysis indicated differential quantitative presence of various PAC oligomers such as DP-8, -9, -11 and -14 indicating either selective binding or uptake. Cranberry proanthocyanidins exhibit cell-line specific cytotoxicity, induce apoptotic markers and augment cytotoxicity of paraplatin in platinum-resistant SKOV-3 ovarian cancer cells.

A Flavonoid Fraction from Cranberry Extract Inhibits Proliferation of Human Tumor Cell Lines

Posted
Authors
Ferguson PJ,Kurowska E, Freeman DJ, Chambers AF,
Journal
J Nutr 134:1529-1535
Abstract

In light of the continuing need for effective anticancer agents, and the association of fruit and vegetable consumption with reduced cancer risk, edible plants are increasingly being considered as sources of
anticancer drugs. Cranberry presscake (the material remaining after squeezing juice from the berries), when fed to mice bearing human breast tumor MDA-MB-435 cells, was shown previously to decrease the growth and
metastasis of tumors. Therefore, further studies were undertaken to isolate the components of cranberry that
contributed to this anticancer activity, and determine the mechanisms by which they inhibited proliferation. Using
standard chromatographic techniques, a warm-water extract of cranberry presscake was fractionated, and an
acidified methanol eluate (Fraction 6, or Fr6) containing flavonoids demonstrated antiproliferative activity. The
extract inhibited proliferation of 8 human tumor cell lines of multiple origins. The androgen-dependent prostate cell
line LNCaP was the most sensitive of those tested (10 mg/L Fr6 inhibited its growth by 50%), and the estrogen independent breast line MDA-MB-435 and the androgen-independent prostate line DU145 were the least sensitive
(250 mg/L Fr6 inhibited their growth by 50%). Other human tumor lines originating from breast (MCF-7), skin
(SK-MEL-5), colon (HT-29), lung (DMS114), and brain (U87) had intermediate sensitivity to Fr6. Using flow
cytometric analyses of DNA distribution (cell cycle) and annexin V-positivity (apoptosis), Fr6 was shown in
MDA-MB-435 cells to block cell cycle progression (P 0.05) and induce cells to undergo apoptosis (P 0.05) in
a dose-dependent manner. Fr6 is potentially a source of a novel anticancer agent.