Health Research

Health Research Library

Search

2024

Displaying 21 - 30 of 40

Berries in Microbiome-Mediated Gastrointestinal, Metabolic, and Immune Health

Posted
Authors
Komarnytsky S, Wagner C, Gutierrez J, Shaw OM
Journal
Curr Nutr Rep. 2023 Mar;12(1):151-166. doi: 10.1007/s13668-023-00449-0. Epub 2023 Feb 4. PMID: 36738429
Abstract

Purpose of review: Current research has shown that berry-derived polymeric substrates that resist human digestion (dietary fibers and polyphenols) are extensively metabolized in the gastrointestinal tract dominated by microbiota. This review assesses current epidemiological, experimental, and clinical evidence of how berry (strawberry, blueberry, raspberry, blackberry, cranberry, black currant, and grapes) phytochemicals interact with the microbiome and shape health or metabolic risk factor outcomes.

Recent findings: There is a growing evidence that the compositional differences among complex carbohydrate fractions and classes of polyphenols define reversible shifts in microbial populations and human metabolome to promote gastrointestinal health. Interventions to prevent gastrointestinal inflammation and improve metabolic outcomes may be achieved with selection of berries that provide distinct polysaccharide substrates for selective multiplication of beneficial microbiota or oligomeric decoys for binding and elimination of the pathogens, as well as phenolic substrates that hold potential to modulate gastrointestinal mucins, reduce luminal oxygen, and release small phenolic metabolites signatures capable of ameliorating inflammatory and metabolic perturbations. These mechanisms may explain many of the differences in microbiota and host gastrointestinal responses associated with increased consumption of berries, and highlight potential opportunities to intentionally shift gut microbiome profiles or to modulate risk factors associated with better nutrition and health outcomes.

Clinical Potential of Fruit in Bladder Cancer Prevention and Treatment

Posted
Authors
Wigner P, Bijak M, Saluk-Bijak J
Journal
Nutrients. 2022 Mar 8;14(6):1132. doi: 10.3390/nu14061132. PMID: 35334790; PMCID: PMC8951059
Abstract

Bladder cancer (BC) is the most common tumor of the urinary system in the world. Moreover, despite using anticancer therapies, BC is also characterized by a high recurrence risk. Among numerous risk factors, cigarette smoking, occupational exposure to certain aromatic compounds, and genetic factors contribute most strongly to BC development. However, the epidemiological data to date suggests that diet quality may influence some carcinogenic factors of BC and, therefore, might have a preventative effect. Adequate consumption of selected fruits with scientifically proven properties, including pomegranates and cranberries, can significantly reduce the risk of developing BC, even in those at risk. Therefore, in this article, we aim to elucidate, using available literature, the role of fruits, including pomegranates, cranberries, citrus fruits, cactus pears, and apples, in BC prevention and treatment. Previous data indicate the role of compounds in the above-mentioned fruits in the modulation of the signaling pathways, including cell proliferation, cell growth, cell survival, and cell death. 

Consumption of Berries and Flavonoids in Relation to Mortality in NHANES, 1999-2014

Posted
Authors
Zhang L, Muscat JE, Chinchilli VM, Kris-Etherton PM, Al-Shaar L, Richie JP
Journal
J Nutr. 2024 Feb;154(2):734-743. doi: 10.1016/j.tjnut.2024.01.002. Epub 2024 Jan 5. PMID: 38184200
Abstract

Background: Berries are foods that are abundant in nutrients, especially flavonoids, that promote good health; however, the effects of total berries on mortality are not well characterized.

Objectives: We evaluated whether intakes of total berries and specific berry types including blueberries, strawberries, cranberries, flavonoids, and subclasses of flavonoids (anthocyanidins, flavonols, flavones, flavanones, flavan-3-ols, and isoflavones) in relation to mortality risk in United States adults.

Methods: A nationally representative sample of the United States adult population was obtained using data from the 1994-2014 NHANES (n = 37,232). Intake of berries was estimated using 24-h food recalls (1999-2014), and flavonoids intake was calculated using the matched USDA's expanded flavonoid database. Mortality outcomes based on 8 y of follow-up were obtained using linked death certificates.

Results: Compared with nonconsumers, the multivariable-adjusted hazard ratio for all-cause mortality was 0.79 [95% confidence intervals (CI): 0.7, 0.89] for any berry consumption, 0.86 (0.75, 0.99) for strawberry consumption 0.79 (0.66, 0.95) for blueberries, and 0.69 (0.51, 0.93) for cranberries. Compared with the lower median of intake, risk of all-cause mortality for greater intake was 0.85 (0.74, 0.97) for total flavonoids, 0.85 (0.76, 0.95) for anthocyanidins, 0.9 (0.82, 0.99) for flavan-3-ols, 0.89 (0.79, 0.9) for flavanols, and 0.89 (0.8, 0.99) for flavones. There was a dose-response relationship between intakes of total flavonoids, anthocyanidins, and flavones and lower all-cause mortality risks (Ptrend < 0.05). Risk for cardiometabolic mortality was 0.75 (0.58, 0.98) for berry consumers and 0.49 (0.25, 0.98) for cranberry consumers. For respiratory disease mortality, risk was 0.41 (0.2, 0.86), compared with blueberry nonconsumers.

Conclusion: Higher intakes of berries and flavonoids were associated with a lower overall mortality risk in adult Americans. Few adults regularly consume berries, indicating that increased intake of berries and flavonoid-rich foods may be beneficial to health.

Cranberry Polyphenols and Prevention against Urinary Tract Infections: New Findings Related to the Integrity and Functionality of Intestinal and Urinary Barriers

Posted
Authors
González de Llano D, Roldán M, Taladrid D, Relaño de la Guía E, Moreno-Arribas MV, Bartolomé B
Journal
J Agric Food Chem. 2024 May 8;72(18):10328-10338. doi: 10.1021/acs.jafc.3c07169. Epub 2024 Apr 23. PMID: 38651941; PMCID: PMC11082924
Abstract

This work seeks to generate new knowledge about the mechanisms underlying the protective effects of cranberry against urinary tract infections (UTI). Using Caco-2 cells grown in Transwell inserts as an intestinal barrier model, we found that a cranberry-derived digestive fluid (containing 135 ± 5 mg of phenolic compounds/L) increased transepithelial electrical resistance with respect to control (ΔTEER = 54.5 Ω cm2) and decreased FITC-dextran paracellular transport by about 30%, which was related to the upregulation of the gene expression of tight junction (TJ) proteins (i.e., occludin, zonula occludens-1 [ZO-1], and claudin-2) (3–4-fold change with respect to control for claudin-2 and 2–3-fold for occludin and ZO-1). Similar protective effects, albeit to a lesser extent, were observed when Caco-2 cells were previously infected with uropathogenic Escherichia coli (UPEC). In a urinary barrier model comprising T24 cells grown in Transwell inserts and either noninfected or UPEC-infected, treatments with the cranberry-derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and phenylacetic acid (PAA) (250 μM) also promoted favorable changes in barrier integrity and permeability. In this line, incubation of noninfected T24 cells with these metabolites induced positive regulatory effects on claudin-2 and ZO-1 expression (3.5- and 2-fold change with respect to control for DOPAC and 1.5- and >2-fold change with respect to control for PAA, respectively). Overall, these results suggest that the protective action of cranberry polyphenols against UTI might involve molecular mechanisms related to the integrity and functionality of the urothelium and intestinal epithelium.

Cranberry Proanthocyanidins Mitigate Reflux-Induced Transporter Dysregulation in an Esophageal Adenocarcinoma Model

Posted
Authors
Zhang Y, Weh KM, Tripp BA, Clarke JL, Howard CL, Sunilkumar S, Howell AB, Kresty LA
Journal
Pharmaceuticals (Basel). 2023 Dec 7;16(12):1697. doi: 10.3390/ph16121697. PMID: 38139823; PMCID: PMC10747310
Abstract

We recently reported that cranberry proanthocyanidins (C-PACs) inhibit esophageal adenocarcinoma (EAC) by 83% through reversing reflux-induced bacterial, inflammatory and immune-implicated proteins and genes as well as reducing esophageal bile acids, which drive EAC progression. This study investigated whether C-PACs’ mitigation of bile reflux-induced transporter dysregulation mechanistically contributes to EAC prevention. RNA was isolated from water-, C-PAC- and reflux-exposed rat esophagi with and without C-PAC treatment. Differential gene expression was determined by means of RNA sequencing and RT-PCR, followed by protein assessments. The literature, coupled with the publicly available Gene Expression Omnibus dataset GSE26886, was used to assess transporter expression levels in normal and EAC patient biopsies for translational relevance. Significant changes in ATP-binding cassette (ABC) transporters implicated in therapeutic resistance in humans (i.e., Abcb1Abcb4Abcc1Abcc3Abcc4Abcc6 and Abcc10) and the transport of drugs, xenobiotics, lipids, and bile were altered in the reflux model with C-PACs’ mitigating changes. Additionally, C-PACs restored reflux-induced changes in solute carrier (SLC), aquaporin, proton and cation transporters (i.e., Slc2a1Slc7a11Slc9a1Slco2a1 and Atp6v0c). This research supports the suggestion that transporters merit investigation not only for their roles in metabolism and therapeutic resistance, but as targets for cancer prevention and targeting preventive agents in combination with chemotherapeutics.

Data on microRNA expression, predicted gene targets and pathway analysis in response to different concentrations of a cranberry proanthocyanidin-rich extract and its metabolite 3-(4-hydroxyphenyl)-propionic acid in intestinal Caco-2BBe1 cells

Posted
Authors
Dimoff Z, Lofft Z, Liang F, Chen S, Massara P, Wu D, Paetau-Robinson I, Khoo C, Taibi A, Comelli EM
Journal
Data Brief. 2024 Mar 6;54:110238. doi: 10.1016/j.dib.2024.110238. PMID: 38516278; PMCID: PMC10951455
Abstract

Cranberry-derived proanthocyanidin (PAC) is processed by the gut microbiota to produce 3-(4-hydroxyphenyl)-propionic acid (HPPA), among other metabolites. These data are in support of the article entitled, "Cranberry proanthocyanidin and its microbial metabolite 3,4-dihydroxyphenylacetic acid, but not 3-(4-hydroxyphenyl)-propionic acid, partially reverse pro-inflammatory microRNA responses in human intestinal epithelial cells," published in Molecular Nutrition and Food Research [1]. Here we describe data generated by nCounterⓇ Human v3 miRNA Expression Panel of RNA obtained from Caco-2BBe1 cells exposed to two different concentrations of cranberry extract rich in PAC (50 µg/ml or 100 µg/ml) or 3-(4-hydroxyphenyl)-propionic acid (5 µg/ml or 10 µg/ml) for 24 h, then stimulated with 1 ng/ml of IL-1ß or not (mock) for three hours. The raw data are publicly available at the NCBI GEO database GSE237078. This work also includes descriptive methodological procedures, treatment-responsive microRNA (miRNA) expression profiles in Caco-2BBe1 cells, and in silico mRNA gene target and pathway enrichment analyses of significantly differentially expressed miRNAs (q < 0.001). Cranberry and its components have recognized health benefits, particularly in relation to combatting inflammation and pathogenic bacterial adhesion. These data will be valuable as a reference to study the response of intestinal cells to other polyphenol-rich food sources, analyze gut microbial responses to cranberry and its metabolites in different cell lines and mammalian hosts to elucidate individualized effects, and to delineate the role of the gut microbiota in facilitating the benefits of cranberry. Moreover, these data will aid in expanding our knowledge on the mechanisms underlying the benefits of cranberry and its components.

(Research funded in part by Ocean Spray Cranberries, Inc.)

Development of an Improved Adenovirus Vector and Its Application to the Treatment of Lifestyle-Related Diseases

Posted
Authors
Shimizu K.
Journal
Development of an Improved Adenovirus Vector and Its Application to the Treatment of Lifestyle-Related Diseases. Biol Pharm Bull. 2024;47(5):886-894. doi: 10.1248/bpb.b23-00837. PMID: 38692864
Abstract

The number of patients with lifestyle-related diseases such as type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), has continued to increase worldwide. Therefore, development of innovative therapeutic methods targeting lifestyle-related diseases is required. Gene therapy has attracted considerable attention as an advanced medical treatment. Safe and high-performance vectors are essential for the practical application of gene therapy. Replication-incompetent adenovirus (Ad) vectors are widely used in clinical gene therapy and basic research. Here, we developed a novel Ad vector, named Ad-E4-122aT, exhibiting higher and longer-term transgene expression and lower hepatotoxicity than conventional Ad vectors. We also elucidated the mechanisms underlying Ad vector-induced hepatotoxicity during the early phase using Ad-E4-122aT. Next, we examined the therapeutic effects of the genes of interest, namely zinc finger AN1-type domain 3 (ZFAND3), lipoprotein lipase (LPL), and lysophospholipid acyltransferase 10 (LPLAT10), on lifestyle-related diseases using Ad-E4-122aT. We showed that the overexpression of ZFAND3 in the liver improved glucose tolerance and insulin resistance. Liver-specific LPL overexpression suppressed hepatic lipid accumulation and improved glucose metabolism. LPLAT10 overexpression in the liver suppressed postprandial hyperglycemia by increasing glucose-stimulated insulin secretion. Furthermore, we also focused on foods to advance research on the pathophysiology and treatment of lifestyle-related diseases. Cranberry and calamondin, which are promising functional foods, attenuated the progression of MASLD/NAFLD. Our findings will aid the development of new therapeutic methods, including gene therapy, for lifestyle-related diseases such as T2DM and MASLD/NAFLD.

Differences in P-Type and Type 1 Uropathogenic Escherichia coli Urinary Anti-Adhesion Activity of Cranberry Fruit Juice Dry Extract Product and D-Mannose Dietary Supplement

Posted
Authors
Howell AB, Dreyfus JF, Bosley S, Krueger CG, Birmingham A, Reed JD, Chughtai B
Journal
J Diet Suppl. 2024;21(5):633-659. doi: 10.1080/19390211.2024.2356592. Epub 2024 May 28. PMID: 38804849
Abstract

Background: Urinary tract infection (UTI) prevention benefits of cranberry intake are clinically validated, especially for women and children. To ensure the benefits of cranberry dietary supplement products, the anti-adhesion activity (AAA) against uropathogenic bacteria is routinely used in in vitro bioassays to determine the activity in whole product formulations, isolated compounds, and ex vivo bioassays to assess urinary activity following intake. D-mannose is another dietary supplement taken for UTI prevention, based on the anti-adhesion mechanism.

Objective: Compare the relative AAA of cranberry and D-mannose dietary supplements against the most important bacterial types contributing to the pathogenesis of UTI and consider how certain components potentially induce in vivo activity.

Methods: The current study used a crossover design to determine ex vivo AAA against both P- and Type 1-fimbriated uropathogenic Escherichia coli of either D-mannose or a cranberry fruit juice dry extract product containing 36 mg of soluble proanthocyanidins (PACs), using bioassays that measure urinary activity following consumption. AAA of extracted cranberry compound fractions and D-mannose were compared in vitro and potential induction mechanisms of urinary AAA explored.

Results: The cranberry dietary supplement exhibited both P-type and Type 1 in vitro and ex vivo AAA, while D-mannose only prevented Type 1 adhesion. Cranberry also demonstrated more robust and consistent ex vivo urinary AAA than D-mannose over each 1-week study period at different urine collection time points. The means by which the compounds with in vitro activity in each supplement product could potentially induce the AAA in urines was discussed relative to the data.

Conclusions: Results of the current study provide consumers and healthcare professionals with additional details on the compounds and mechanisms involved in the positive, broad-spectrum AAA of cranberry against both E. coli bacterial types most important in UTIs and uncovers limitations on AAA and effectiveness of D-mannose compared to cranberry.

Do dietary interventions exert clinically important effects on the bioavailability of β-lactam antibiotics? A systematic review with meta-analyses

Posted
Authors
Wiesner A, Zagrodzki P, Paśko P
Journal
J Antimicrob Chemother. 2024 Apr 2;79(4):722-757. doi: 10.1093/jac/dkae028. PMID: 38334389
Abstract

Background: Managing drug-food interactions may help to achieve the optimal action and safety profile of β-lactam antibiotics.

Methods: We conducted a systematic review with meta-analyses in adherence to PRISMA guidelines for 32 β-lactams. We included 166 studies assessing the impact of food, beverages, antacids or mineral supplements on the pharmacokinetic (PK) parameters or PK/pharmacodynamic (PK/PD) indices.

Results: Eighteen of 25 β-lactams for which data on food impact were available had clinically important interactions. We observed the highest negative influence of food (AUC or Cmax decreased by >40%) for ampicillin, cefaclor (immediate-release formulations), cefroxadine, cefradine, cloxacillin, oxacillin, penicillin V (liquid formulations and tablets) and sultamicillin, whereas the highest positive influence (AUC or Cmax increased by >45%) for cefditoren pivoxil, cefuroxime and tebipenem pivoxil (extended-release tablets). Significantly lower bioavailability in the presence of antacids or mineral supplements occurred for 4 of 13 analysed β-lactams, with the highest negative impact for cefdinir (with iron salts) and moderate for cefpodoxime proxetil (with antacids). Data on beverage impact were limited to 11 antibiotics. With milk, the extent of absorption was decreased by >40% for cefalexin, cefradine, penicillin G and penicillin V, whereas it was moderately increased for cefuroxime. No significant interaction occurred with cranberry juice for two tested drugs (amoxicillin and cefaclor).

Conclusions: Factors such as physicochemical features of antibiotics, drug formulation, type of intervention, and patient's health state may influence interactions. Due to the poor actuality and diverse methodology of included studies and unproportionate data availability for individual drugs, we judged the quality of evidence as low.

Effect of Dietary Berry Supplementation on Antioxidant Biomarkers in Adults with Cardiometabolic Risks: A Systematic Review of Clinical Trials

Posted
Authors
Helm MM, Alaba T, Klimis-Zacas D, Izuora K, Basu A
Journal
Antioxidants (Basel). 2023 May 30;12(6):1182. doi: 10.3390/antiox12061182. PMID: 37371912; PMCID: PMC10295504
Abstract

Cardiometabolic conditions are closely associated with inflammation and oxidative stress. Dietary berries may serve as a beneficial nutrition intervention to address the features of cardiometabolic dysfunction and associated oxidative stress. The high antioxidant status of dietary berries may increase antioxidant capacity and reduce biomarkers of oxidative stress. This systematic review was conducted to investigate these effects of dietary berries. The search was conducted using PubMed, Cochrane Library, Web of Science, and citation searching. Through this search we identified 6309 articles and 54 were included in the review. Each study’s risk of bias was assessed using the 2019 Cochrane Methods’ Risk of Bias 2 tool. Antioxidant and oxidative stress outcomes were evaluated, and the magnitude of effect was calculated using Cohen’s d. A range of effectiveness was reported in the included studies and the quality of the studies differed between the parallel and crossover trials. Considering the inconsistency in reported effectiveness, future investigations are warranted to determine the acute and sustained reductions of oxidative stress biomarkers from dietary berry intake.