Health Research

Health Research Library

Search

Ultrahigh Pressure Liquid Chromatography-Atmospheric Pressure Photoionization-Tandem Mass Spectrometry for the Determination of Polyphenolic Profiles in the Characterization and Classification of Cranberry-Based Pharmaceutical preparations and natural ext

Posted
Authors
Parets L, Alechaga E, Nunez O, Saurina J, Hernandez-Cassou S, Puignou L
Journal
Anal Methods 8(22):4363-4378
Abstract

Ultrahigh pressure liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) was applied to the analysis and authentication of fruit-based products and pharmaceutical preparations. Two sub-2 micro m C18 reversed-phase columns, Syncronis (100x2.1 mm, 1.7 micro m) and Hypersil Gold (50x2.1 mm, 1.9 micro m), were proposed under gradient elution with 0.1% formic acid aqueous solution and methanol mobile phases for the determination of 29 polyphenols, allowing us to obtain polyphenolic profiles in less than 13.5 and 23.5 min, respectively. Several atmospheric pressure ionization (API) sources (H-ESI, APCI, and APPI) were compared. For dopant-assisted APPI, four organic solvents, toluene, acetone, chlorobenzene and anisole, were evaluated as dopants. Both H-ESI and acetone-assisted APPI were selected as the best ionization sources for the analysis of targeted polyphenols. Acceptable sensitivity (LOD values down to 0.5 micro g kg-1 in the best of cases), linearity (r2 higher than 0.995) and good precision (RSD values lower than 15.1%) and trueness (relative errors lower than 10.2%) were obtained using both UHPLC-API-MS/MS methods. A simple extraction procedure, consisting of sample sonication with acetone/water/hydrochloric acid (70:29.9:0.1 v/v/v) and centrifugation, was used. The proposed UHPLC-ESI-MS/MS and UHPLC-APPI-MS/MS methods with both C18 reversed-phase columns were then applied to the analysis of 32 grape-based and cranberry-based natural products and pharmaceutical preparations. Polyphenolic profile data were then analyzed by principal component analysis (PCA) to extract information on the most significant data contributing to the classification of natural extracts according to the type of fruit.

Urinary Clearance of Cranberry Flavonol Glycosides in Humans 2

Posted
Authors
Wang Y, Singh AP, Nelson HN, Kaiser AJ, Reker NC, Hooks TL, Wilson T, Vorsa N.
Journal
J Agric Food Chem 64(42):7931-7939
Abstract

Cranberry is reported to have health benefits, including prevention of urinary tract infections and other chronic diseases, due to the high content of polyphenols, including flavonols and flavan-3-ols. The aim of this study was to determine the clearance of flavonol glycosides and flavan-3-ols and/or their metabolites in human urine. Ten healthy women volunteers ingested 240 mL of cranberry juice containing flavonol glycosides. Urine samples were collected at 0, 90, 225, and 360 min postingestion. While flavan-3-ols were not detected, five flavonol glycosides common in cranberry were identified. Quercetin-3-galactoside, the most abundant cranberry flavonol, exhibited the highest peak urine concentration (Cmax) of 1315 pg/mg creatinine, followed by quercetin-3-rhamnoside, quercetin-3-arabinoside, myricetin-3-arabinoside, and myricetin-3-galactoside. Quercetin-3-arabinoside showed delayed clearance, Cmax at 237 min (Tmax), relative to other flavonols (90-151 min). Both aglycone and the conjugated sugar moiety structure mediate the flavonol's bioavailability. Interindividual variation for bioavailability and clearance is also apparent. Metabolites, e.g. glucoronides, were not detected.

Urinary Clearance of Cranberry Flavonol Glycosides in Humans

Posted
Authors
Yifei Wang, Ajay P. Singh, Heather N. Nelson, Amanda J. Kaiser, Nicolette C. Reker,Tisha L. Hooks,Ted Wilson, and Nicholi Vorsa
Journal
J. Agric. Food Chem
Abstract

ABSTRACT: Cranberry is reported to have health benefits, including prevention of urinary tract infections and other chronic diseases, due to the high content of polyphenols, including flavonols and flavan-3-ols. The aim of this study was to determine the clearance of flavonol glycosides and flavan-3-ols and/or their metabolites in human urine. Ten healthy women volunteers ingested 240 mL of cranberry juice containing flavonol glycosides. Urine samples were collected at 0, 90, 225, and 360 min postingestion. While flavan-3-ols were not detected, five flavonol glycosides common in cranberry were identified. Quercetin-3-galactoside, the most abundant cranberry flavonol, exhibited the highest peak urine concentration (Cmax) of 1315 pg/mg creatinine, followed by quercetin-3-rhamnoside, quercetin-3-arabinoside, myricetin-3-arabinoside, and myricetin-3-galactoside. Quercetin-3-arabinoside showed delayed clearance, Cmax at 237 min (Tmax), relative to other flavonols (90−151 min). Both aglycone and the conjugated sugar moiety structure mediate the flavonol’s bioavailability. Interindividual variation for bioavailability and clearance is also apparent. Metabolites, e.g. glucoronides, were not detected. KEYWORDS: flavonols, glycosides, flavan-3-ols, cranberry juice, human urine, MS-MS

Adjuvant effect of cranberry proanthocyanidin active fraction on antivirulent property of ciprofloxacin against Pseudomonas aeruginosa.

Posted
Authors
Vadekeetil A., Alexandar V., Chhibber S., Harjai K.
Journal
Microbial Pathogenesis; 2016. 90:98-103
Abstract

Quorum sensing inhibitors (QSIs) act as antivirulent agents since quorum sensing (QS) plays a vital role in regulating pathogenesis of Pseudomonas aeruginosa. However, application of single QSI may not be effective as pathogen is vulnerable to successful mutations. In such conditions, combination of QSIs can be exploited as there can be synergistic or adjuvant action. In the present study, we evaluated the antivirulence efficacy of combination of Vaccinium macrocarpon proanthocyanidin active fraction (PAF) and ciprofloxacin (CIP) at their sub-MICs using standard methods followed by analysis of their mode of action on QS using TLC and molecular docking. There was significant improvement in action of CIP when it was combined with PAF in reducing the QS controlled virulence factors (p<0.05), motilities and biofilm of P. aeruginosa. TLC profiles of QS signals [(Acyl homoserine lactone (AHL) and Pseudomonas quinolone signal (PQS))] indicated that CIP in combination with PAF, besides showing inhibitory action on production of AHLs, also modulated production and inactivation of PQS. Docking scores also supported the observation. We therefore hypothesize that PAF-CIP combination, having improved anti-virulence property; can be exploited as a potent drug pairing against P. aeruginosa.

Anti-inflammatory Activity of Berry Fruits in Mice Model of Inflammation is Based on Oxidative Stress Modulation

Posted
Authors
Nardi GM; Farias Januario AG; Freire CG; Megiolaro F; Schneider K; Perazzoli MR; Do Nascimento SR; Gon AC; Mariano LN; Wagner G; Niero R; Locatelli C
Journal
Pharmacognosy Research. 8(Suppl 1):S42-9
Abstract

BACKGROUND: Many fruits have been used as nutraceuticals because the presence of bioactive molecules that play biological activities. OBJECTIVE: The present study was designed to compare the anti-inflammatory and antioxidant effects of methanolic extracts of Lycium barbarum (GOJI), Vaccinium macrocarpon (CRAN) and Vaccinium myrtillus (BLUE). MATERIALS AND METHODS: Mices were treated with extracts (50 and 200 mg/kg, p.o.), twice a day through 10 days. Phytochemical analysis was performed by high-performance liquid chromatography. Antioxidant activity was determine by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, reducing power, lipid peroxidation thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and catalase (CAT) activity. Anti-inflammatory activity was evaluated by paw edema followed by determination of myeloperoxidase (MPO) and TBARS. RESULTS: High amount of phenolic compounds, including rutin, were identified in all berries extracts. However, quercetin was observed only in BLUE and CRAN. GOJI presents higher scavenging activity of DPPH radical and reducing power than BLUE and CRAN. The extracts improved antioxidant status in liver; BLUE showed the largest reduction (75.3%) in TBARS when compared to CRAN (70.7%) and GOJI (65.3%). Nonetheless, CAT activity was lower in BLUE group. However, hepatic concentrations of GSH were higher in animals treated with GOJI rather than CRAN and BLUE. Despite all fruits caused a remarkable reduction in paw edema and TBARS, only BLUE and CRAN were able to reduce MPO. CONCLUSION: These results suggest that quercetin, rutin, or other phenolic compound found in these berry fruits extracts could produce an anti-inflammatory response based on modulation of oxidative stress in paw edema model. SUMMARY: Within fruits broadly consumed because of its nutraceuticals properties include, Lycium barbarum (Goji berry), Vaccinium myrtillus (Blueberry or Bilberry) and Vaccinium macrocarpon (Cranberry)The objectives of this study were the investigation and comparison of chemical composition, antioxidant activity "in vitro" and "in vivo" and anti inflammatory property of berry fruits bought dry form.In summary, two main findings can be addressed with this study: (1) Berry fruits presented antioxidant and anti inflammatory activities "in vitro" and "in vivo"; (2) the extracts of GOJI, CRAN, and BLUE modulate the inflammatory process by different mechanisms.

Anti-leukopenic and antioxidant effects of cranberry extract in benzene and fluorouracil induced leukopenia in rats

Posted
Authors
Hussein M.A., Boshra S.A.
Journal
International Journal of Applied Research in Natural Products. 9 (1) (pp 1-8), 2016
Abstract

The present study was to evaluate anti-leukopenia and antioxidant effects of cranberry extract(222mg/kg.b.w, orally)in 400mg/kg.b.w., orally benzene and/or 20mg/kg.b.w., I.P 5-Flourouracil-induced leukopenia rats. Two weeks after induction of leukopenia in rats, cranberry extract was administrated for 30 consecutive days. Onthe31thday, the rats were sacrificed for the estimation of hemoglobin (Hb%), complete blood cell count Leucocyte (WBC) and platelet count (PLT),as well as biochemical parameters; alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), lipid peroxides (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), total cholesterol (TC), triglycerides (TG), HDL-C, LDL-C, p53gene expression, nitric oxide (NO) and tumor necroses factor-alpha (TNF-alpha). The results of this study showed that administration of cranberry extract to leukopenia induced rats demonstrated a significant (P<0.01) increase in Hb%, WBCs and PLT as well as a significant (P<0.01) improvement in biochemical parameters and life span as compared to benzene and/or 5-Flourouracil control rats. The histological examinations of this study revealed damage and degeneration in the lung of benzene and/or 5-Flourouracil treated rats. Also, lung of cranberry treated rats showed significant improvement and protection against benzene and/or 5-Flourouracil harmful effect. On the other hand, the results clearly suggested that the oxidative stress of benzene was higher than 5-Flourouracil. Industrial relevance. Our observations have clearly demonstrated that the cranberry extract has significant antioxidant and anti-leukopenia activity due to presence of phenolic compounds. Cranberry extract possessed a capability to inhibit the lipid peroxidation and activate the antioxidant markers (GSH, SOD and CAT) in leukopenia-induced by 5-Flourouracil and benzene in rats. Also, industrial relevance of the present results showed that cranberry extract can be used as an antioxidant and anti-leukopenia therapeutic agent and deserves clinical trial in the near future as an adjuvant therapy in leukopenic patients. This could serve as a stepping stone towards the discovery of newer safe and effective antitumor agents.

Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

Posted
Authors
Rodriguez-Perez, C. Quirantes-Pine, R. Uberos, J. Jimenez-Sanchez, C. Pena, A. Segura-Carretero, A.
Journal
Food and Function; 2016. 7(3):1564-1573.
Abstract

Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p <0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion.

Atomic force microscopy-guided fractionation reveals the influence of cranberry phytochemicals on adhesion of Escherichia coli.

Posted
Authors
Gupta P; Song B; Neto C; Camesano TA.
Journal
Food & Function. 7(6):2655-66, 2016
Abstract

Cranberry juice has been long used to prevent infections because of its effect on the adhesion of the bacteria to the host surface. Proanthocyanidins (PACs) comprise of one of the major classes of phytochemicals found in cranberry, which have been extensively studied and found effective in combating adhesion of pathogenic bacteria. The role of other cranberry constituents in impacting bacterial adhesion haven't been studied very well. In this study, cranberry juice fractions were prepared, characterized and tested for their effect on the surface adhesion of the pathogenic clinical bacterial strain E. coli B78 and non-pathogenic control E. coli HB101. The preparations tested included crude cranberry juice extract (CCE); three fractions containing flavonoid classes including proanthocyanidins, anthocyanins and flavonols; selected sub-fractions, and commercially available flavonol glycoside, quercetin-3-O-galactoside. Atomic force microscopy (AFM) was used to quantify the adhesion forces between the bacterial surface and the AFM probe after the treatment with the cranberry fractions. Adhesion forces of the non-pathogenic, non fimbriated lab strain HB101 are small (average force 0.19 nN) and do not change with cranberry treatments, whereas the adhesion forces of the pathogenic, Dr adhesion E. coli strain B78 (average force of 0.42 nN) show a significant decrease when treated with cranberry juice extract or fractions (average force of 0.31 nN, 0.37 nN and 0.39 nN with CCE, Fraction 7 and Fraction 4 respectively). In particular, the fractions that contained flavonols in addition to PACs were more efficient at lowering the force of adhesion (average force of 0.31 nN-0.18 nN between different sub-fractions containing flavonols and PACs). The sub-fractions containing flavonol glycosides (from juice, fruit and commercial quercetin) all resulted in reduced adhesion of the pathogenic bacteria to the model probe. This strongly suggests the anti adhesive role of other classes of cranberry compounds in conjunction with already known PACs and may have implications for development of alternative anti bacterial treatments.

Beneficial effects of cranberry in the prevention of obesity and related complications: metabolic syndrome and diabetes - a review.

Posted
Authors
Kowalska, K. Olejnik, A.
Journal
Journal of Functional Foods; 2016. 20:171-181
Abstract

In recent years, obesity, metabolic syndrome and diabetes are becoming epidemic both in developed and developing countries. Recent experimental and clinical studies have raised interest in the potential health benefits of cranberry consumption in obesity and metabolic syndrome, which appear to be associated with the phytochemical composition of this fruit. Interestingly, cranberry administration has been reported to ameliorate dyslipidemia, hyperglycaemia and oxidative stress in individuals with the metabolic syndrome. This review focuses on the recent findings regarding beneficial effects of cranberry on obesity and metabolic syndrome, and discusses its potential mechanisms of action. The results of studies presented in this review have demonstrated that cranberry ameliorates insulin resistance and plasma lipid profile, decreases diet-induced weight gain and visceral obesity, and diminishes blood markers of oxidative stress. Thus, cranberry could be an effective and safe component of functional foods addressed for individuals with metabolic complications.

Cranberries (Oxycoccus quadripetalus) inhibit pro-inflammatory cytokine and chemokine expression in 3T3-L1 adipocytes.

Posted
Authors
Kowalska K., Olejnik A
Journal
Food chemistry. 196 (pp 1137-1143), 2016
Abstract

Oxidative stress and inflammation are involved in the development of obesity, type 2 diabetes and vascular complications. Systemic inflammation, as seen in obesity, is associated with high plasmatic levels of pro-inflammatory, pro-atherogenic and pro-thrombotic adipokines. Here we studied the effects of lyophilized cranberries (LCB) on the secretion and expression of PAI-1, IL-6, MCP-1 and leptin in mature 3T3-L1 adipocytes under baseline conditions and excessive inflammatory response elicitation by stimulation with H2O2. Our data demonstrated that LCB significantly reduced the expression and secretion of IL-6, MCP-1 and leptin, as well as suppressed the overexpression of PAI-1 induced by H2O2. Our findings suggested that LCB counteracted the stimulatory effect of H2O2 on secretion and expression of pro-inflammatory adipokines, implying a potential anti-inflammatory effect during the inflammatory process induced via oxidative stress in adipose tissue.