Health Research

Health Research Library

Search

Dietary Polyphenols and Periodontitis-A Mini-Review of Literature.

Posted
Authors
Basu A; Masek E; Ebersole JL
Journal
Molecules. 23(7)
Abstract

Periodontitis, which is a chronic infection and disease of the periodontium, is a significant global health burden and is linked to other chronic health conditions such as diabetes and cardiovascular diseases. Dietary polyphenols present in a wide variety of plant-based foods, herbs, and botanicals have been shown to exert antimicrobial, anti-inflammatory, and reduced osteoclast and alveolar bone loss activities in animal models of periodontitis. Polyphenol-containing beverages and foods especially green tea and its active catechin epigallocatechin-3-gallate, cranberries, pomegranates, and fruit and vegetable extracts have reported bacteriostatic/bactericidal activity against microbial species such as P. gingivalis and shown total bacterial burden in clinical studies. These polyphenols also exhibit anti-inflammatory and antioxidant effects, which have the potential to impact various biological mechanisms for reducing the initiation and progression of periodontitis. The main objective of this mini-review is to focus on the mechanisms of action of dietary polyphenols in improving the pathophysiology underlying chronic inflammatory diseases like periodontitis based on pre-clinical and clinical models.

Effects of Blueberry and Cranberry Consumption on Type 2 Diabetes Glycemic Control: A Systematic Review.

Posted
Authors
Rocha DMUP; Caldas APS; da Silva BP; Hermsdorff HHM; Alfenas RCG.
Journal
Critical Reviews in Food Science & Nutrition. 1-13. 10.1080/10408398.2018.1430019 [doi]
Abstract

The metabolic effects of cranberry and blueberry consumption on glycemic control have been evaluated in vitro and in animal models as well as in human studies, although findings have not been systematically reviewed yet. Therefore, a systematic review was carried out of relevant randomized clinical trials (RCTs) in order to assess the effect of berries (blueberry and cranberry) consumption on type 2 diabetes (T2DM) glycemic control. Some evidences were also discussed on the anti-diabetic mechanisms exerted by berries polyphenols. Studies were identified by searching electronic databases: LILACS, PubMed/MEDLINE, Scopus, The Cochrane Library and Web of Science. Three authors independently searched and extracted RCTs in which the effect of berries (cranberry or blueberry) consumption on T2DM glycemic control was assessed. A total of 7 RCTs, involving 270 adults with type 2 diabetes were included. Despite the heterogeneity of the administration forms (in natura, dried, extract, preparations - juice), dosage, duration of the intervention and type of population of the studies involving these two berries some studies highlight the potential benefit of berries, especially of blueberry, on glucose metabolism in T2DM subjects. Daily cranberry juice (240 mL) consumption for 12 weeks and blueberry extract or powder supplementation (9.1 to 9.8 mg of anthocyanins, respectively) for 8 to 12 weeks showed a beneficial effect on glucose control in T2DM subjects. Those results indicate a promising use of these berries in T2DM management; although more studies are required to better understand the mechanisms involved.

Effects of Superfoods on Risk Factors of Metabolic Syndrome: a Systematic Review of Human Intervention Trials.

Posted
Authors
van den Driessche JJ; Plat J; Mensink RP.
Journal
Food & Function. 9(4):1944-1966
Abstract

Functional foods can be effective in the prevention of metabolic syndrome and subsequently the onset of cardiovascular diseases and type II diabetes mellitus. More recently, however, another term was introduced to describe foods with additional health benefits: "superfoods", for which, to date, no generally accepted definition exists. Nonetheless, their consumption might contribute to the prevention of metabolic syndrome, for example due to the presence of potentially bioactive compounds. This review provides an overview of controlled human intervention studies with foods described as "superfoods" and their effects on metabolic syndrome parameters. First, an Internet search was performed to identify foods described as superfoods. For these superfoods, controlled human intervention trials were identified until April 2017 investigating the effects of superfood consumption on metabolic syndrome parameters: waist circumference or BMI, blood pressure, or concentrations of HDL cholesterol, triacylglycerol or glucose. Seventeen superfoods were identified, including a total of 113 intervention trials: blueberries (8 studies), cranberries (8), goji berries (3), strawberries (7), chili peppers (3), garlic (21), ginger (10), chia seed (5), flaxseed (22), quinoa (1), cocoa (16), maca (1), spirulina (7), wheatgrass (1), acai berries (0), hemp seed (0) and bee pollen (0). Overall, only limited evidence was found for the effects of the foods described as superfoods on metabolic syndrome parameters, since results were not consistent or the number of controlled intervention trials was limited. The inconsistencies might have been related to intervention-related factors, such as duration or dose. Furthermore, conclusions may be different if other health benefits are considered.

Effects of Unextruded and Extruded Cranberry Pomace on Selected Metabolic Parameters in High-Fat Diet Fed Rats.

Posted
Authors
Bajerska J; Chmurzynska A; Mildner-Szkudlarz S; Drzymala-Czyz S; Gornas P; Waskiewicz A; Muzsik A; Podgorski T; Nowaczyk P; Wozniewicz M.
Journal
Acta Scientiarum Polonorum Technologia Alimentaria. 17(1):91-100
Abstract

BACKGROUND: The effects of un-extruded (UCP) and extruded cranberry pomace (ECP) on fecal fat excretion, liver index, lipid and carbohydrate metabolism, and inhibition of oxidative stress due to a high-fat diet (HFD) in rats were studied. METHODS: The Wistar rats for 8 weeks received one of the four diets: (1) control (modified the American Institute of Nutrition: AIN based diet containing 7% fat), (2) HFD (AIN based diet containing 30% fat), (3) HFD with 3% un-extruded (UCP) and (4) HFD with 3% (ECP). RESULTS: Both UCP and ECP significantly improved the plasma antioxidant capacity and decreased lipid per- oxidation in rats fed a HFD. However, only the addition of 3% UCP into the HFD significantly increased the fecal lipid excretion and considerably decreased serum triglycerides level in rats. CONCLUSIONS: Further investigation is needed to determine the role of an individual components present in UCP and ECP in the improvement of metabolic conditions observed in the current study.

Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti- Beta -Amyloid Aggregation.

Posted
Authors
Ma H, Johnson SL, Liu W, DaSilva NA, Meschwitz S, Dain JA, Seeram NP
Journal
International Journal of Molecular Sciences;19(2):461.
Abstract

Glycation is associated with several neurodegenerative disorders, including Alzheimer's disease (AD), where it potentiates the aggregation and toxicity of proteins such as beta -amyloid (A beta ). Published studies support the anti-glycation and neuroprotective effects of several polyphenol-rich fruits, including berries, which are rich in anthocyanins. Herein, blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts were evaluated for: (1) total phenolic and anthocyanins contents, (2) free radical (DPPH) scavenging and reactive carbonyl species (methylglyoxal; MGO) trapping, (3) anti-glycation (using BSA-fructose and BSA-MGO models), (4) anti-A beta aggregation (using thermal- and MGO-induced fibrillation models), and, (5) murine microglia (BV-2) neuroprotective properties. Berry crude extracts (CE) were fractionated to yield anthocyanins-free (ACF) and anthocyanins-enriched (ACE) extracts. The berry ACEs (at 100 micro g/mL) showed superior free radical scavenging, reactive carbonyl species trapping, and anti-glycation effects compared to their respective ACFs. The berry ACEs (at 100 micro g/mL) inhibited both thermal- and MGO-induced A beta fibrillation. In addition, the berry ACEs (at 20 micro g/mL) reduced H2O2-induced reactive oxygen species production, and lipopolysaccharide-induced nitric oxide species in BV-2 microglia as well as decreased H2O2-induced cytotoxicity and caspase-3/7 activity in BV-2 microglia. The free radical scavenging, reactive carbonyl trapping, anti-glycation, anti-A beta fibrillation, and microglial neuroprotective effects of these berry extracts warrant further in vivo studies to evaluate their potential neuroprotective effects against AD.

Food-Drug Interactions Precipitated by Fruit Juices other than Grapefruit Juice: An Update Review.

Posted
Authors
Chen M; Zhou SY; Fabriaga E; Zhang PH; Zhou Q.
Journal
Journal of Food & Drug Analysis. 26(2S):S61-S71
Abstract

This review addressed drug interactions precipitated by fruit juices other than grapefruit juice based on randomized controlled trials (RCTs). Literature was identified by searching PubMed, Cochrane Library, Scopus and Web of Science till December 30 2017. Among 46 finally included RCTs, six RCTs simply addressed pharmacodynamic interactions and 33 RCTs studied pharmacokinetic interactions, whereas seven RCTs investigated both pharmacokinetic and pharmacodynamic interactions. Twenty-two juice-drug combinations showed potential clinical relevance. The beneficial combinations included orange juice-ferrous fumarate, lemon juice-99mTc-tetrofosmin, pomegranate juice-intravenous iron during hemodialysis, cranberry juice-triple therapy medications for H. pylori, blueberry juice-etanercept, lime juice-antimalarials, and wheat grass juice-chemotherapy. The potential adverse interactions included decreased drug bioavailability (apple juice-fexofenadine, atenolol, aliskiren; orange juice-aliskiren, atenolol, celiprolol, montelukast, fluoroquinolones, alendronate; pomelo juice-sildenafil; grape juice-cyclosporine), increased bioavailability (Seville orange juice-felodipine, pomelo juice-cyclosporine, orange-aluminum containing antacids). Unlike furanocoumarin-rich grapefruit juice which could primarily precipitate drug interactions by strong inhibition of cytochrome P450 3A4 isoenzyme and P-glycoprotein and thus cause deadly outcomes due to co-ingestion with some medications, other fruit juices did not precipitate severely detrimental food-drug interaction despite of sporadic case reports. The extent of a juice-drug interaction may be associated with volume of drinking juice, fruit varieties, type of fruit, time between juice drinking and drug intake, genetic polymorphism in the enzymes or transporters and anthropometric variables. Pharmacists and health professionals should properly screen for and educate patients about potential adverse juice-drug interactions and help minimize their occurrence. Much attention should be paid to adolescents and the elderly who ingest medications with drinking fruit juices or consume fresh fruits during drug treatment. Meanwhile, more researches in this interesting issue should be conducted.

Impact of Cranberry Juice Enriched with Omega-3 Fatty Acids Adjunct with Nonsurgical Periodontal Treatment on Metabolic Control and Periodontal Status in Type 2 Patients with Diabetes with Periodontal Disease.

Posted
Authors
Javid, A. Z. Maghsoumi-Norouzabad, L. Ashrafzadeh, E. Yousefimanesh, H. A. Zakerkish, M. Angali, K. A. Ravanbakhsh, M. Babaei, H.
Journal
Journal of the American College of Nutrition;37(1):71-79.
Abstract

Objectives: Cranberries, high in polyphenols, have been associated with a favorable glycemic response in patients with type 2 diabetes and also are beneficial for oral health. Because type 2 diabetes mellitus and periodontal disease have a physiological relationship, this study aimed to evaluate the hypothesis that cranberry juice enriched with omega-3 will improve glycemic and lipid profiles and periodontal status in patients with diabetes with periodontal disease. Materials and Methods: In this randomized clinical trial, 41 patients with diabetes (age 35-67 years) with periodontal disease were recruited and randomly assigned to 4 groups: control (C; n=12), receiving omega-3 (I1; n=10, 1 g/twice daily), cranberry juice (I2; n=9, 200 ml, twice daily), and cranberry juice enriched with omega-3 (I3; n=10, 200 ml, containing 1 g omega-3) twice daily for 8 weeks. Nonsurgical periodontal therapy was provided for all patients during the study. Fasting blood glucose and glycated hemoglobin, lipid profile, probing depth, anthropometric indices, and 3-day 24-hour dietary recalls were measured pre- and postintervention. Results: Glycated hemoglobin was decreased significantly in I1 and I3 groups. Serum high-density lipoprotein cholesterol (HDL-C) levels increased significantly in the I3 group compared to baseline and compared to I1 and I2 groups. Probing depth was significantly reduced in all groups postintervention. Conclusion: Consumption of cranberry juice enriched with omega-3 can be beneficial as adjuvant therapy with nonsurgical periodontal therapy in decreasing glycated hemoglobin, increasing HDL-C, and improving periodontal status in patients with diabetes with periodontal disease.

INHIBITION OF ADHESION OF UROPATHOGENIC ESCHERICHIA COLI TO CANINE AND FELINE UROEPITHELIAL CELLS BY AN EXTRACT FROM CRANBERRY.

Posted
Authors
Mayot, G; Secher, C; Di Martino P
Journal
The Journal of Microbiology, Biotechnology and Food Sciences; Nitra Vol. 7, Iss. 4: 404-406.DOI:10.15414/jmbfs.2018.7.4.404-406
Abstract

Uropathogenic Escherichia coli (UPEC) is the main infectious agent of urinary tract infections (UTI) in humans, dogs and cats. Dietary consumption of cranberries is thought to be associated with prevention of UTI in humans based on decreased adhesion of UPEC to uroepithelial cells. The present study evaluated the impact of cranberry extract addition on the attachment of UPEC to canine Madin-Darby Canine Kidney and Crandell-Rees Feline Kidney uroepithelial cells. When the extract was present during bacterial growth or only during adhesion tests, a dose-dependent decrease of UPEC adhesion to all cell types was observed. Bacterial growth was weakly decreased only in the presence of the highest concentration of cranberry extract showing that the anti-adherence effect did not require a bacterial growth inhibitory effect. In conclusion, the addition of cranberry extract has preventive effects on the in vitro bacterial attachment to canine and feline uroepithelial cells in a dose dependent way.

Proanthocyanidins-Will they Effectively Restrain Conspicuous Bacterial Strains Devolving on Urinary Tract Infection?

Posted
Authors
Jagannathan V; Viswanathan P.
Journal
Journal of Basic Microbiology. 58(7):567-578
Abstract

Struvite or infection stones are one of the major clinical burdens among urinary tract infection, which occur due to the interaction between microbes and urine mineral components. Numerous urinary tract infection (UTI) causing microbes regulate through biofilm formation for survival from host defense, it is often found difficult in its eradication with simple anti-microbial agents and also the chance of recurrence and resistance development is significantly high. Cranberry consumption and maintenance of urinary tract health have been supported by clinical, epidemiological, and mechanistic studies. It predominantly contains proanthocyanidins that belong to the class of polyphenols with repeating catechin and epicatechin monomeric units. Numerous studies have correlated proanthocyanidin consumption and prevention of bacterial adhesion to uroepithelial cells. Quorum sensing (QS) is the prime mechanism that drives bacteria to coordinate biofilm development and virulence expression. Reports have shown that proanthocyanidins are effective in disrupting cell-cell communication by quenching signal molecules. Overall, this review assesses the merits of proanthocyanidins and its effective oppression on adherence, motility, QS, and biofilm formation of major UTI strains such as Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis by comparing and evaluating results from many significant findings.

Propolis Potentiates the Effect of Cranberry (Vaccinium macrocarpon) Against the Virulence of Uropathogenic Escherichia Coli.

Posted
Authors
Ranfaing J; Dunyach-Remy C; Louis L; Lavigne JP; Sotto A.
Journal
Scientific Reports. 8(1):10706,
Abstract

Uropathogenic Escherichia coli (UPEC), the most prevalent bacteria isolated in urinary tract infections (UTI), is now frequently resistant to antibiotics used to treat this pathology. The antibacterial properties of cranberry and propolis could reduce the frequency of UTIs and thus the use of antibiotics, helping in the fight against the emergence of antibiotic resistance. Transcriptomic profiles of a clinical UPEC strain exposed to cranberry proanthocyanidins alone (190micro g/mL), propolis alone (102.4micro g/mL) and a combination of both were determined. Cranberry alone, but more so cranberry+propolis combined, modified the expression of genes involved in different essential pathways: down-expression of genes involved in adhesion, motility, and biofilm formation, and up-regulation of genes involved in iron metabolism and stress response. Phenotypic assays confirmed the decrease of motility (swarming and swimming) and biofilm formation (early formation and formed biofilm). This study showed for the first time that propolis potentiated the effect of cranberry proanthocyanidins on adhesion, motility, biofilm formation, iron metabolism and stress response of UPEC. Cranberry+propolis treatment could represent an interesting new strategy to prevent recurrent UTI.