Health Research

Health Research Library

Search

Effects of Cranberry Juice on Pharmacokinetics of -Lactam

Posted
Authors
Li M, Andrew MA, Wang J, Salinger DH, Vicini P,
Journal
Antimicrob Agents Chemother 53(7):2725-32
Abstract

Cranberry juice consumption is often recommended along with low-dose oral antibiotics for prophylaxis for
recurrent urinary tract infection (UTI). Because multiple membrane transporters are involved in the intestinal
absorption and renal excretion of -lactam antibiotics, we evaluated the potential risk of pharmacokinetic
interactions between cranberry juice and the -lactams amoxicillin (amoxicilline) and cefaclor. The amoxicillin-
cranberry juice interaction was investigated in 18 healthy women who received on four separate occasions
a single oral test dose of amoxicillin at 500 mg and 2 g with or without cranberry juice cocktail (8 oz) according
to a crossover design. A parallel cefaclor-cranberry juice interaction study was also conducted in which 500 mg
cefaclor was administered with or without cranberry juice cocktail (12 oz). Data were analyzed by noncompartmental
methods and nonlinear mixed-effects compartmental modeling. We conclude that the concurrent
use of cranberry juice has no significant effect on the extent of oral absorption or the renal clearance of
amoxicillin and cefaclor. However, delays in the absorption of amoxicillin and cefaclor were observed. These
results suggest that the use of cranberry juice at usual quantities as prophylaxis for UTI is not likely to alter
the pharmacokinetics of these two oral antibiotics.

Cranberry components inhibit interleukin-6, interleukin-8, and prostaglandin E production by lipopolysaccharide-activated gingival fibroblasts

Posted
Authors
Bodet C, Chandad F, Grenier D
Journal
Eur J Oral Sci 115(1):64-70
Abstract

Periodontitis is a chronic inflammatory disease that affects the tooth supporting tissues. Gingival fibroblasts are the most abundant cells in periodontal tissues and participate actively in the host inflammatory response to periodontopathogens, which is known to mediate local tissue destruction in periodontitis. The aim of this study was to investigate the effect of a proanthocyanidin-enriched cranberry fraction, prepared from cranberry juice concentrate, on inflammatory mediator production by gingival fibroblasts stimulated by the lipopolysaccharide (LPS) of Aggregatibacter actinomycetemcomitans. Interleukin (IL)-6, IL-8, and prostaglandin E(2) (PGE(2)) production by fibroblasts treated with the cranberry fraction and stimulated by A. actinomycetemcomitans LPS was evaluated by enzyme-linked immunosorbent assay. Changes induced by A. actinomycetemcomitans LPS and the cranberry fraction in the expression and phosphorylation state of fibroblast intracellular signaling proteins were characterized by antibody microarrays. The LPS-induced IL-6, IL-8, and PGE(2) responses of gingival fibroblasts were inhibited by treatment with the cranberry fraction. This fraction was found to inhibit fibroblast intracellular signaling proteins, a phenomenon that may lead to a down-regulation of activating protein-1 activity. Cranberry components also reduced cyclooxygenase 2 expression. This study suggests that cranberry juice contains molecules with interesting properties for the development of new host-modulating therapeutic strategies in the adjunctive treatment of periodontitis.

Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7.

Posted
Authors
Lacombe A, Wu VC, Tyler S, Edwards K
Journal
Int J Food Microbiol 139(2010):102-7
Abstract

We investigated the antimicrobial effect of constituents of the American cranberry (Vaccinium macrocarpon); sugar plus organic acids, phenolics, and anthocyanins, against Escherichia coli O157:H7. Each fractional component was assayed over a 24-h period with 5-log initial inocula to determine the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and log CFU/ml reductions, at their native pH and neutral pH. Each fraction produced significant reductions (P0.05) at the native pH: MICs for sugars plus organic, phenolics, and anthocyanins were 5.6/2.6 Brix/acid (citric acid equivalents) 2.70g/L (gallic acid equivalent), and 14.80mg/L (cyanidin-3-glucoside equivalent), respectively. Sugars plus organic acids at native pH (3) produced a reduction below detectable limits (1 log CFU/ml) compared to the control at 24h for 11.3/5.2 and 5.6/2.6 Brix/acid. Phenolics at native pH (4) produced reductions below detectable limits compared to the control at 24h and initial inocula for treatments of 5.40 and 2.70g/L. Anthocyanins at native pH (2) produced reductions below detectable limits for treatments of 29.15 and 14.80mg/L cyanidin-3-glucoside equivalents. Neutralized phenolics and anthocyanins had the same MIC and MBC as those at their native pH. Neutralized sugars plus organic acids did not inhibit bacterial growth compared to the control. Neutralized phenolics reduced bacteria below detectable limits in treatments of 5.40g/L and 2.70g/L compared to the control. Neutralized anthocyanins reduced bacterial growth below detectable limits at the concentration of 29.15mg/L, but at 14.80mg/L there was no significant reduction. Stationary-phase cells of E. coli O157:H7 were treated with 5% of each fraction in 0.8% NaCl for 20min and viewed under transmission electron microscopy. All fractions caused significant damage compared the control. Sugars plus organic acids caused visible osmotic stress, while phenolics and anthocyanins caused disintegration of the outer membrane.

Phytochemicals of cranberries and cranberry products: characterization, potential health effects, and processing stability

Posted
Authors
Pappas E, Schaich KM.
Journal
Crit Rev Food Sci Nutr. 2009 Oct;49(9):741-81. doi: 10.1080/10408390802145377. PMID: 20443158
Abstract

Emerging evidence is elucidating how non-nutrient phytochemicals underlie the health promotion afforded by fruits and vegetables. This review focuses on Vaccinium macrocarpon, the American cranberry, compiling a comprehensive list of its known phytochemical components, and detailing their prevalence in cranberry fruit and its products. Flavonoids, especially colored anthocyanins, abundant flavonols, and unique proanthocyanidins, have attracted major research attention. Other notable active components include phenolic acids, benzoates, hydroxycinnamic acids, terpenes and organic acids. Health effects of cranberries, cranberry products, and isolated cranberry components in humans and animals, as well as in vitro, are debated. Evidence for protection from several bacterial pathogens, cancer, cardiovascular disease, and inflammation is compelling, while neuroprotection and anti-viral activity also have begun to draw new consideration. Emerging bioavailability data is considered and potential molecular mechanisms are evaluated, linking phytochemicals to health effects through their biochemical properties and reactions. Finally, the effects of processing and storage on cranberry phytochemicals is discussed, with a focus on identifying research gaps and novel means to preserve their natural, health-promoting components.

Human glycemic response and phenolic content of unsweetened cranberry juice

Posted
Authors
Wilson T, Singh AP, Vorsa N, Goettl CD, Kittleson KM, Roe CM, Kastello GM and Ragsdale FR
Journal
J Med Food 11(1):46-54
Abstract

This cross-sectional study determined the phenolic composition of an over-the-counter cranberry juice (CBJ) with high-performance liquid chromatography and examined the effects of low- and normal-calorie CBJ formulations on the postprandial glycemic response in healthy humans. The CBJ used in this study contained seven phenolic acids, with 3- and 5-caffeoylquinic acid being the primary components, and 15 flavonol glycosides, with myricetin-3-galactoside and quercetin-3-galactoside being the most prevalent. CBJ proanthocyanidins consisted of three different tetramers and a heptamer, which were confirmed with matrix-assisted laser desorption ionization-time of flight-mass spectrometry analysis. Participants received one of the following six treatments: nothing (no water/beverage), water (480 mL), unsweetened low-calorie CBJ (38 Cal/480 mL), normal-calorie CBJ (280 Cal/480 mL), isocaloric normal calorie (high fructose corn syrup [HFCS]), or isocaloric low-calorie beverages. No significant differences in postprandial blood glucose or insulin were observed in the groups receiving nothing, water, or low-calorie treatments. In contrast, the ingestion of normal-calorie CBJ and normal-calorie control beverage resulted in significantly higher blood glucose concentrations 30 minutes postprandially, although the differences were no longer significant after 180 minutes. Plasma insulin of normal-calorie CBJ and control (HFCS) recipients was significantly higher 60 minutes postprandially, but not significantly different 120 minutes postprandially. CBJ ingestion did not affect heart rate or blood pressure. This study suggests that the consumption of a low-calorie CBJ rich in previously uncharacterized trimer and heptamer proanthocyanidins is associated with a favorable glycemic response and may be beneficial for persons with impaired glucose tolerance.

Preparation and characterization of chitosan-based antimicrobial films containing encapsulated lemon essential oil by ionic gelation and cranberry juice

Posted
Authors
Odjo, Kabirou; Al-Maqtari, Qais Ali; Yu, Hang; Xie, Yunfei; Guo, Yahui; Li, Mi; Du, Yuhang; Liu, Kunfeng; Chen, Yulun; Yao, Weirong
Journal
FOOD CHEMISTRY 397:133781. 10.1016/j.foodchem.2022.133781
Abstract

Research about biodegradable antimicrobial films continues to receive a lot of attention due to the plastic pollution crisis and the need for environment-friendly and safe food products. In this study, we developed chitosan-based antimicrobial films using a combination of encapsulated lemon essential oil (LEO) by ionic gelation and cranberry juice and evaluated the performance of the films. Our results indicated that the incor-poration of LEO microspheres and cranberry juice into the chitosan films improved the UV barrier and thermal properties as well as antioxidant activity of the films. The increase in antioxidants was consistent with the chemical components in LEO and cranberry juice as determined by GC-MS; some of which possess antioxidant properties. Furthermore, following antimicrobial activity test, considerable inhibition halo of 11 and 20 mm were observed respectively against fungi Candida albicans and Penicillium roqueforti, particularly in presence of the film containing both LEO microspheres and cranberry juice.