Health Research

Health Research Library

Search

Multidimensional Comparative Analysis of Phenolic Compounds in Organic Juices with High Antioxidant Capacity.

Posted
Authors
Nowak D; Goslinski M; Szwengiel A.
Journal
Journal of the Science of Food & Agriculture. 97(8):2657-2663
Abstract

BACKGROUND: A diet rich in fruit, vegetables and juices is associated with health benefit and reduced risk of certain civilization diseases. Antioxidant properties depend mainly on the total content of polyphenols and their composition. The aim of this study was to perform a multidimensional comparative analysis of phenolic compounds of organic juices with high antioxidant capacity (chokeberry, elderberry, cranberry, pomegranate).RESULTS: All the analyzed juices were a rich source of phenolic compounds. Chokeberry juices had the highest total polyphenol content (up to 7900 mg GAE L-1 ). These juices as well as pomegranate juice were characterized by the highest antioxidant capacity (~5000 mg Trolox equivalents L-1 ). Other samples had lower total polyphenols content and total antioxidant capacity. Multidimensional analysis of the profiles of phenolic compounds showed that chokeberry juices differ from the other juices. Cranberry and pomegranate juices were similar to each other, and elderberry juice was closer to these samples than to chokeberry. The predominant polyphenols of chokeberry juices were anthocyanins (especially cyanidin-3-galactoside and cyanidin-3-arabinoside) and phenolic acids (chlorogenic and neochlorogenic acid). Elderberry juice was an exception by having flavonols (quercetin derivatives) as the principal compounds.CONCLUSION: Chokeberry juices were characterized by the highest antioxidant properties, which predispose them to further clinical research concerning the supporting cardiovascular disease prophylaxis

Oral Pharmacokinetic Interaction of Ester Rich Fruit Juices and Pharmaceutical Excipients with Tenofovir Disoproxil Fumarate in Male Wistar Rats.

Posted
Authors
Shailender J; Ravi PR; Saha P; Myneni S.
Journal
Xenobiotica http://dx.doi.org/10.1080/00498254.2016.1269375
Abstract

1. The aim of this study was to evaluate the role of intestinal esterases on the absorption process of tenofovir disoproxil fumarate (TDF). 2. The esterase inhibition capacity of fruit juices (FJs) rich in ester linkages and pharmaceutical excipients (having ester bonds) was performed in vitro by incubating TDF with each FJ and excipient in the intestinal washings. The ex vivo everted gut sac model was also used to evaluate the absorption enhancement capacity of these FJs and excipients. Single-dose oral pharmacokinetic studies were performed by concomitant administration of TDF with each of the selected FJs and excipients. 3. The in vitro and ex vivo studies showed that cremophor-EL and all FJs prevented the metabolism of TDF with grapefruit juice (GFJ) having the highest level of inhibition. Further, the permeability flux of the monoester form of tenofovir was increased by 113% and 212% by cranberry juice (CBJ) and GFJ, respectively. The in vivo studies also showed that both CBJ and GFJ enhanced the oral bioavailability of TDF as the AUC was increased by 24% and 97%, respectively. 4. These results indicate that the prevention of the metabolic conversion of TDF to its monoester form is crucial in increasing the oral absorption of TDF.

Photoprotective Effects of Cranberry Juice and its Various Fractions Against Blue Light-Induced Impairment in Human Retinal Pigment Epithelial Cells.

Posted
Authors
Chang CH, Chiu HF, Han YC, Chen IH, Shen YC, Venkatakrishnan K, Wang CK.
Journal
Pharm Biol. 55(1):571-580.
Abstract

CONTEXT:Cranberry has numerous biological activities, including antioxidation, anticancer, cardioprotection, as well as treatment of urinary tract infection (UTI), attributed to abundant phenolic contents.OBJECTIVE:The current study focused on the effect of cranberry juice (CJ) on blue light exposed human retinal pigment epithelial (ARPE-19) cells which mimic age-related macular degeneration (AMD).MATERIALS AND METHODS:Preliminary phytochemical and HPLC analysis, as well as total antioxidant capacity and scavenging activity of cranberry ethyl acetate extract and different CJ fractions (condensed tannins containing fraction), were evaluated. In cell line model, ARPE-19 were irradiated with blue light at 450 nm wavelength for 10 h (mimic AMD) and treated with different fractions of CJ extract at different doses (5-50 μg/mL) by assessing the cell viability or proliferation rate using MTT assay (repairing efficacy).RESULTS:Phytochemical and HPLC analysis reveals the presence of several phenolic compounds (flavonoids, proanthocyanidin, quercetin) in ethyl acetate extract and different fractions of CJ. However, the condensed tannin containing fraction of ethyl acetate extract of CJ displayed the greater (p < 0.05) scavenging activity especially at the dose of 1 mg/mL. Similarly, the condensed tannin containing fraction at 50 μg/mL presented better (p < 0.05) repairing ability (increased cell viability). Furthermore, the oligomeric condensed tannin containing fraction display the best (p < 0.05) repairing efficiency at 50 μg/mL.DISCUSSION AND CONCLUSION:In conclusion, this study distinctly proved that condensed tannin containing fraction of CJ probably exhibits better free radicals scavenging activity and thereby effectively protected the ARPE-19 cells and thus, hampers the progress of AMD.

Polyphenol Interactions Mitigate the Immunogenicity and Allergenicity of Gliadins.

Posted
Authors
Perot M; Lupi R; Guyot S; Delayre-Orthez C; Gadonna-Widehem P; Thebaudin JY; Bodinier M; Larre C.
Journal
Journal of Agricultural & Food Chemistry. 65(31):6442-6451
Abstract

Wheat allergy is an IgE-mediated disorder. Polyphenols, which are known to interact with certain proteins, could be used to reduce allergic reactions. This study screened several polyphenol sources for their ability to interact with gliadins, mask epitopes, and affect basophil degranulation. Polyphenol extracts from artichoke leaves, cranberries, apples, and green tea leaves were examined. Of these extracts, the first three formed insoluble complexes with gliadins. Only the cranberry and apple extracts masked epitopes in dot blot assays using anti-gliadin IgG and IgE antibodies from patients with wheat allergies. The cranberry and artichoke extracts limited cellular degranulation by reducing mouse anti-gliadin IgE recognition. In conclusion, the cranberry extract is the most effective polyphenol source at reducing the immunogenicity and allergenicity of wheat gliadins.

Protein-Bound Vaccinium Fruit Polyphenols Decrease IgE Binding to Peanut Allergens and RBL-2H3 Mast Cell Degranulation In Vitro.

Posted
Authors
Plundrich, N. J. Bansode, R. R. Foegeding, E. A. Williams, L. L. Lila, M. A.
Journal
Food and Function 8(4):1611-1621
Abstract

Peanut allergy is a worldwide health concern. In this study, the natural binding properties of plant-derived polyphenols to proteins was leveraged to produce stable protein-polyphenol complexes comprised of peanut proteins and cranberry (Vaccinium macrocarpon Ait.) or lowbush blueberry (Vaccinium angustifolium Ait.) pomace polyphenols. Protein-bound and free polyphenols were characterized and quantified by multistep extraction of polyphenols from protein-polyphenol complexes. Immunoblotting was performed with peanut-allergic plasma to determine peanut protein-specific IgE binding to unmodified peanut protein, or to peanut protein-polyphenol complexes. In an allergen model system, RBL-2H3 mast cells were exposed to peanut protein-polyphenol complexes and evaluated for their inhibitory activity on ionomycin-induced degranulation ( beta -hexosaminidase and histamine). Among the evaluated polyphenolic compounds from protein-polyphenol complex eluates, quercetin, - in aglycone or glycosidic form - was the main phytochemical identified to be covalently bound to peanut proteins. Peanut protein-bound cranberry and blueberry polyphenols significantly decreased IgE binding to peanut proteins at p<0.05 (38% and 31% decrease, respectively). Sensitized RBL-2H3 cells challenged with antigen and ionomycin in the presence of protein-cranberry and blueberry polyphenol complexes showed a significant (p<0.05) reduction in histamine and beta -hexosaminidase release (histamine: 65.5% and 65.8% decrease; beta -hexosaminidase: 60.7% and 45.4% decrease, respectively). The modification of peanut proteins with cranberry or blueberry polyphenols led to the formation of peanut protein-polyphenol complexes with significantly reduced allergenic potential. Future trials are warranted to investigate the immunomodulatory mechanisms of these protein-polyphenol complexes and the role of quercetin in their hypoallergenic potential.

Strawberry and Cranberry Polyphenols Improve Insulin Sensitivity in Insulin-Resistant, Non-Diabetic Adults: a Parallel, Double-Blind, Controlled and Randomised Clinical Trial.

Posted
Authors
Paquette M, Medina Larqué AS, Weisnagel SJ, Desjardins Y, Marois J, Pilon G, Dudonné S, Marette A, Jacques H.
Journal
Br J Nutr.117(4):519-531
Abstract

Plant-derived foods rich in polyphenols are associated with several cardiometabolic health benefits, such as reduced postprandial hyperglycaemia. However, their impact on whole-body insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp technique remains under-studied. We aimed to determine the effects of strawberry and cranberry polyphenols (SCP) on insulin sensitivity, glucose tolerance, insulin secretion, lipid profile, inflammation and oxidative stress markers in free-living insulin-resistant overweight or obese human subjects (n 41) in a parallel, double-blind, controlled and randomised clinical trial. The experimental group consumed an SCP beverage (333 mg SCP) daily for 6 weeks, whereas the Control group received a flavour-matched Control beverage that contained 0 mg SCP. At the beginning and at the end of the experimental period, insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, and glucose tolerance and insulin secretion by a 2-h oral glucose tolerance test (OGTT). Insulin sensitivity increased in the SCP group as compared with the Control group (+0·9 (sem 0·5)×10-3 v. -0·5 (sem 0·5)×10-3 mg/kg per min per pmol, respectively, P=0·03). Compared with the Control group, the SCP group had a lower first-phase insulin secretion response as measured by C-peptide levels during the first 30 min of the OGTT (P=0·002). No differences were detected between the two groups for lipids and markers of inflammation and oxidative stress. A 6-week dietary intervention with 333 mg of polyphenols from strawberries and cranberries improved insulin sensitivity in overweight and obese non-diabetic, insulin-resistant human subjects but was not effective in improving other cardiometabolic risk factors.

UHPLC-Q-Orbitrap-HRMS-Based Global Metabolomics Reveal Metabolome Modifications in Plasma of Young Women after Cranberry Juice Consumption.

Posted
Authors
Liu H; Garrett TJ; Su Z; Khoo C; Gu L.
Journal
Journal of Nutritional Biochemistry. 45:67-76
Abstract

Plasma metabolome in young women following cranberry juice consumption were investigated using a global UHPLC-Q-Orbitrap-HRMS approach. Seventeen female college students, between 21 and 29 years old, were given either cranberry juice or apple juice for three days using a cross-over design. Plasma samples were collected before and after juice consumption. Plasma metabolomes were analyzed using UHPLC-Q-Orbitrap-HRMS followed by orthogonal partial least squares-discriminant analyses (OPLS-DA). S-plot was used to identify discriminant metabolites. Validated OPLS-DA analyses showed that the plasma metabolome in young women, including both exogenous and endogenous metabolites, were altered following cranberry juice consumption. Cranberry juice caused increases of exogenous metabolites including quinic acid, vanilloloside, catechol sulfate, 3,4-dihydroxyphenyl ethanol sulfate, coumaric acid sulfate, ferulic acid sulfate, 5-(trihydroxphenyl)-gamma-valerolactone, 3-(hydroxyphenyl)proponic acid, hydroxyphenylacetic acid and trihydroxybenzoic acid. In addition, the plasma levels of endogenous metabolites including citramalic acid, aconitic acid, hydroxyoctadecanoic acid, hippuric acid, 2-hydroxyhippuric acid, vanilloylglycine, 4-acetamido-2-aminobutanoic acid, dihydroxyquinoline, and glycerol 3-phosphate were increased in women following cranberry juice consumption. The metabolic differences and discriminant metabolites observed in this study may serve as biomarkers of cranberry juice consumption and explain its health promoting properties in human.

Cranberry Extract as a Supplemented Food inTreatment of Oxidative Stress and Breast Cancer Induced by n-methyl-n-nitrosourea in Female Virgin Rats

Posted
Authors
Boshra SA, Hussein MA
Journal
Int J Phytomed 8(2):217-27
Abstract

Breast cancer is the most common cancer and a major cause of death in women. The present study was designed to evaluate the antioxidant and anticancer potential of cranberry extract against N-methyl-N-nitrosourea (MNU) induced mammary carcinoma in rats. The tumor was induced in Female virgin rats of age 50 days by single dose of MNU (50mg/kg.b.w i.p.). After 85 days; all rats developed at least one tumor. Animals were treated with cranberry extract (400 and 600 mg/kg.b.w.orally) and tamoxifen (2mg/kg.b.w. i.p) for 4 weeks (from day 86 to day 113). MNU treatment resulted in a significant decrease (p < 0.05) in blood hemoglobin (Hb), red blood cells (RBC), platelets (PLTs) as well as blood, liver and breast catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD). However, MNU treatment resulted in a significant increase in White blood cells (WBC) as well as plasma, liver and mammary tissue gamma glutamyl transferase (GGT), lactate dehydrogenase (LDH), hexosamine, sialic acid and thiobarbituric acid reactive substances (TBARs). Upon administration of the cranberry extract, the levels of WBC, GGT, LDH, hexosamine, sialic acid, TBARs, Hb, RBC, PLTs, CAT, GPx and SOD were significantly normalized. Histopathological changes also confirmed the formation of tumor tubules and neovascularization after the MNU treatment. Cranberry extract administration significantly reduces the growth of MNU-induced mammary tumors, and therefore has strong potential as a useful therapeutic regimen for inhibiting breast cancer development. Comparing the beneficial effect of cranberry extract with that of MNU-induced breast cancer, cranberry extract showed antitumor and antioxidant activity indicated by the measured biochemical parameters and the histopathological examination of mammary tissue. The results of the present study indicate that cranberry extract possesses strong anticancer effects through its role in modulating glycoprotein components and the levels of oxidative stress biomarkers. Cranberry exerted a stronger anticancer effect at the dosage of 600 mg/kg body weight than at dosage 400 mg/kg body weight.

Polyphenol Characterization, Anti-Oxidant, Anti-Proliferation and Anti-Tyrosinase Activity of Cranberry Pomace

Posted
Authors
Rupasinghe V, Neir SV, Parmar I
Journal
Functional Foods in Health and Disease 6(11):754-68
Abstract

Background: Cranberry pomace (CP), an underutilized by-product from juice processing, contains a wide range of biologically active compounds that can be recovered and used in a variety of applications in functional foods and nutraceuticals. Methods: In this study, analytical chemical techniques such as solvent extractions and characterization of extracts in respect with their phenolic content were performed using ultra-high performance liquid chromatography mass spectrometry (UPLC-MS) and spectrophotometry. Crude CP extract and its phenolic acids, flavonols, anthocyanins and proanthocyanidins–rich fractions were then evaluated for their anti-oxidant capacity, tyrosinase inhibitory activity, and anti-proliferation activity against hepatocellular carcinoma HepG2 cells. Results: On a dry weight basis, the different CP fractions contained seven major anthocyanins (0.1-125 mg/g), six major phenolic acids (0.8-31 mg/g), seven flavonols (1-126 mg/g) and five flavan-3-ols (0.1-12 mg/g). Fractions rich in flavonols exhibited the most potent antioxidant capacities with ferric ion reducing antioxidant power values of 1.8-1.9 mmole/g and 2, 2-diphenyl-1-picrylhydrazyl radical scavenging IC50 values of 15.1-15.2 mg/L respectively. On the other hand, fractions rich in phenolic acids and flavan-3-ol monomers demonstrated the most potent anti-tyrosinase activity (IC50=6.1-6.2 mg/L) and anti-proliferative activity (IC50=7.8-15.8 mg/L). Generally, all the fractions exhibited a dose-response relationship in the selected biological activity assays.Conclusion: This study suggests an effective utilization of CP to obtain biologically active fractions with potential to be used in functional foods and nutraceuticals designed for the prevention of chronic diseases associated with oxidative stress.

Ability of Cranberry Proanthocyanidins in Combination with a Probiotic Formulation to Inhibit in Vitro Invasion of Gut Epithelial Cells by Extra-Intestinal Pathogenic E. Coli

Posted
Authors
Polewski MA, Krueger CG, Reed JD, Leyer G
Journal
Journal of Functional Foods; 2016. 25:123-134
Abstract

Cranberries and probiotics are individually considered as functional foods. This study evaluated the potential synergy between bioactive proanthocyanidins (c-PAC) derived from cranberries and probiotics on reducing the invasiveness of extra-intestinal pathogenic Escherichia coli (ExPEC) in a cell culture model. ExPEC can be a component of the gut microbiota in healthy individuals, and reducing the invasiveness of ExPEC is a potential means to lessen the risk of subsequent urinary tract infections (UTI), the most common bacterial infections in women. c-PAC (>92% A-type) concentrations greater than 36 micro g c-PAC/mL significantly (p<0.05) reduced ExPEC invasion, and was not inhibited by the presence of probiotics. Scanning electron microscopy suggests that the mechanism by which c-PAC prevent ExPEC invasion is by cross-linking surface virulence factors. A probiotic blend also significantly reduced invasion, albeit via a different mechanism. This study demonstrated the potential benefit of combining functional A-type c-PAC components in cranberry foods with probiotics.