Health Research

Health Research Library

Search

Miscellaneous

Displaying 131 - 140 of 181

The efficacy of blueberry and grape seed extract combination on triple therapy for Helicobacter pylori eradication: a randomised controlled trial.

Posted
Authors
Chua CS; Yang KC; Chen JH; Liu YH; Hsu YH; Lee HC; Huang SY.
Journal
International Journal of Food Sciences and Nutrition; 2016. 67(2):177-183.
Abstract

Helicobacter pylori is a major risk factor for gastritis, gastric ulcers and gastric cancer. Traditional therapy with proton pump inhibitor and antibiotics is regarded as optimal for H. pylori eradication whereas, the eradication rate is unsatisfactory. Studies have reported that cranberry may inhibit H. pylori adhesion to the human gastric mucus but lack of other berry extracts have been evaluated in clinical study. Thus, a 9-week add-on randomised controlled trial was conducted to explore the impact of blueberry and grape seed extract (BGE) combinations traditional therapy for H. pylori eradication. In results, we found that there was no significant difference of eradication rate between the berry extract group and placebo group in the intention-to-treat analysis and in the per-protocol analysis (94.64% versus 84.62%, p=0.085). Diarrhoea, constipation and epigastric pain were observed increasing during ingestion of the berry extract in some cases. In conclusion, this study indicated that no significant difference existed between the BGE extract group and placebo group in eradication rate under triple therapy.

Impact of Cranberries on Gut Microbiota and Cardiometabolic Health: Proceedings of the Cranberry Health Research Conference 2015

Posted
Authors
Blumberg JB, Basu A, Krueger CG, Lila MA, Neto CC, Novotny JA, Reed JD, Rodriguez-Mateos A, Toner CD
Journal
Advances in Nutrition. 2016;7:759S-770S. doi: 10.3945/an.116.012583
Abstract

Recent advances in cranberry research have expanded the evidence for the role of this Vaccinium berry fruit in modulating gut microbiota function and cardiometabolic risk factors. The A-type structure of cranberry proanthocyanidins seems to be responsible for much of this fruit’s efficacy as a natural antimicrobial. Cranberry proanthocyanidins interfere with colonization of the gut by extraintestinal pathogenic Escherichia coli in vitro and attenuate gut barrier dysfunction caused by dietary insults in vivo. Furthermore, new studies indicate synergy between these proanthocyanidins, other cranberry components such as isoprenoids and xyloglucans, and gut microbiota. Together, cranberry constituents and their bioactive catabolites have been found to contribute to mechanisms affecting bacterial adhesion, coaggregation, and biofilm formation that may underlie potential clinical benefits on gastrointestinal and urinary tract infections, as well as on systemic anti-inflammatory actions mediated via the gut microbiome. A limited but growing body of evidence from randomized clinical trials reveals favorable effects of cranberry consumption on measures of cardiometabolic health, including serum lipid profiles, blood pressure, endothelial function, glucoregulation, and a variety of biomarkers of inflammation and oxidative stress. These results warrant further research, particularly studies dedicated to the elucidation of dose-response relations, pharmacokinetic/metabolomics profiles, and relevant biomarkers of action with the use of fully characterized cranberry products. Freeze-dried whole cranberry powder and a matched placebo were recently made available to investigators to facilitate such work, including interlaboratory comparability.

Link to full text article: http://advances.nutrition.org/content/7/4/759S.full

Adherence Reduction of Campylobacter jejuni and Campylobacter coli Strains to HEp-2 Cells by Mannan Oligosaccharides and a High-Molecular-Weight Component of Cranberry Extract.

Posted
Authors
Ramirez-Hernandez A, Rupnow J, Hutkins RW
Journal
J Food Prot 78(8):1496-505
Abstract

Campylobacter infections are a leading cause of human bacterial gastroenteritis in the United States and are a major cause of diarrheal disease throughout the world. Colonization and subsequent infection and invasion of Campylobacter require that the bacteria adhere to the surface of host cells. Agents that inhibit adherence could be used prophylactically to reduce Campylobacter carriage and infection. Mannan oligosaccharides (MOS) have been used as a feed supplement in livestock animals to improve performance and to replace growth-promoting antibiotics. However, MOS and other nondigestible oligosaccharides may also prevent pathogen colonization by inhibiting adherence in the gastrointestinal tract. In addition, plant extracts, including those derived from cranberries, have been shown to have antiadherence activity against pathogens. The goal of this study was to assess the ability of MOS and cranberry fractions to serve as antiadherence agents against strains of Campylobacter jejuni and Campylobacter coli. Adherence experiments were performed using HEp-2 cells. Significant reductions in adherence of C. jejuni 29438, C. jejuni 700819, C. jejuni 3329, and C. coli 43485 were observed in the presence of MOS (up to 40 mg/ml) and with a high-molecular-weight fraction of cranberry extract (up to 3 mg/ml). However, none of the tested materials reduced adherence of C. coli BAA-1061. No additive effect in adherence inhibition was observed for an MOS-cranberry blend. These results suggest that both components, MOS and cranberry, could be used to reduce Campylobacter colonization and carriage in livestock animals and potentially limit human exposure to this pathogen.

Adhesion of Asaia Bogorensis to Glass and Polystyrene in the Presence of Cranberry Juice.

Posted
Authors
Antolak H, Kregiel D, Czyzowska A
Journal
J Food Prot 78(6):1186-90
Abstract

The aim of the study was to evaluate the adhesion abilities of the acetic acid bacterium Asaia bogorensis to glass and polystyrene in the presence of American cranberry (Vaccinium macrocarpon) juice. The strain of A. bogorensis used was isolated from spoiled commercial fruit-flavored drinking water. The cranberry juice was analyzed for polyphenols, organic acids, and carbohydrates using high-performance liquid chromatography and liquid chromatography-mass spectrometry techniques. The adhesive abilities of bacterial cells in culture medium supplemented with cranberry juice were determined using luminometry and microscopy. The viability of adhered and planktonic bacterial cells was determined by the plate count method, and the relative adhesion coefficient was calculated. This strain of A. bogorensis was characterized by strong adhesion properties that were dependent upon the type of surface. The highest level of cell adhesion was found on the polystyrene. However, in the presence of 10% cranberry juice, attachment of bacterial cells was three times lower. Chemical analysis of juice revealed the presence of sugars, organic acids, and anthocyanins, which were identified as galactosides, glucosides, and arabinosides of cyanidin and peonidin. A-type proanthocyanidins responsible for the antiadhesion properties of V. macrocarpon also were detected.

Antioxidant Activity and Polyphenol Content of Cranberries (Vaccinium Macrocarpon).

Posted
Authors
Kalin P, Gulcin I, Goren AC
Journal
Rec Nat Prod 9(4):496-502
Abstract

Cranberries (Vaccinium macrocarpon) contain many bioactive compounds and have some biological activities and beneficial health properties. In the study, antioxidant effects of lyophilized aqueous extract of cranberry (LAEC) and quantity of some its polyphenolic compounds were determined. For this purpose, we performed DPPH., DMPD.+, ABTS.+ and O2.- radicals scavenging activities, inhibition of lipid peroxidation activity by thiocyanate method, Cu2+ and Fe3+ reducing abilities, FRAP assay and Fe2+ binding activity. At the 10 micro g/mL concentration, LAEC inhibited 52.4% lipid peroxidation produced by linoleic acid emulsion. Also, alpha -tocopherol, BHA, trolox, and BHT had 52.5, 89.9, 93.1 and 94.9% inhibition value at 30 micro g/mL concentration, respectively. Quantitative amounts of some phenolic compounds in LAEC were investigated by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). p-Hydroxy benzoic acid was found as the most abundant phenolic compound (55 mg/kg extract) in LAEC.

Bioactive Compounds and Antioxidant Activity in Different Types of Berries.

Posted
Authors
Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J
Journal
Int J Mol Sci 16(10):24673-706
Abstract

Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

Cranberry Anthocyanin Extract Prolongs Lifespan of Fruit Flies

Posted
Authors
Wang L, Li YM, Lei L, Liu Y, Wang X, Ma KY, Chen ZY
Journal
Exp Gerontol 69:189-95
Abstract

Cranberry is an excellent source of dietary antioxidants. The present study investigated the effect of cranberry anthocyanin (CrA) extract on the lifespan of fruit flies with focus on its interaction with aging-related genes including superoxide dismutase (SOD), catalase (CAT), methuselah (MTH), insulin receptor (InR), target of rapamycin (TOR), hemipterus (Hep), and phosphoenolpyruvate carboxykinase (PEPCK). Results showed that diet containing 20mg/mL CrA could significantly prolong the mean lifespan of fruit flies by 10% compared with the control diet. This was accompanied by up-regulation of SOD1 and down-regulation of MTH, InR, TOR and PEPCK. The stress resistance test demonstrated that CrA could reduce the mortality rate induced by H2O2 but not by paraquat. It was therefore concluded that the lifespan-prolonging activity of CrA was most likely mediated by modulating the genes of SOD1, MTH, InR, TOR and PEPCK.

Cranberry Extract-Enriched Diets Increase NAD(P)H:quinone Oxidoreductase and Catalase Activities in Obese but not in Nonobese Mice

Posted
Authors
Bousova I, Bartikova H, Matouskova P, Lnenickova K, Zappe L, Valentova K, Szotakova B, Martin J, Skalova L
Journal
Nutr Res 35(10):901-9
Abstract

Consumption of antioxidant-enriched diets is 1 method of addressing obesity, which is associated with chronic oxidative stress and changes in the activity/expression of various enzymes. In this study, we hypothesized that the modulation of antioxidant enzymes and redox status through a cranberry extract (CBE)-enriched diet would differ between obese and nonobese mice. The CBE used in this study was obtained from the American cranberry (Vaccinium macrocarpon, Ericaceae), a popular constituent of dietary supplements that is a particularly rich source of (poly)phenols and has strong antioxidant properties. The present study was designed to test and compare the in vivo effects of 28-day consumption of a CBE-enriched diet (2%) on the antioxidant status of nonobese mice and mice with monosodium glutamate-induced obesity. Plasma, erythrocytes, liver, and small intestine were studied concurrently to obtain more complex information. The specific activities, protein, and messenger RNA expression levels of antioxidant enzymes as well as the levels of malondialdehyde and thiol (SH) groups were analyzed. Cranberry extract treatment increased the SH group content in plasma and the glutathione S-transferase activity in the erythrocytes of the obese and nonobese mice. In addition, in the obese animals, the CBE treatment reduced the malondialdehyde content in erythrocytes and increased
NAD(P)H: quinone oxidoreductase (liver) and catalase (erythrocytes and small intestine) activities. The elevation of hepatic
NAD(P)H: quinone oxidoreductase activity was accompanied by an increase in the corresponding messenger RNA levels. The effects of CBE on the activity of antioxidant enzymes and redox status were more pronounced in the obese mice compared with the nonobese mice.

Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption

Posted
Authors
Kim D, Hwang G, Liu Y, Wang Y, Singh AP, Vorsa N, Koo H
Journal
PLoS ONE 10(12):e0145844
Abstract

The exopolysaccharides (EPS) produced by Streptococcus mutans-derived glucosyltransferases (Gtfs) are essential virulence factors associated with the initiation of cariogenic biofilms. EPS forms the core of the biofilm matrix-scaffold, providing mechanical stability while facilitating the creation of localized acidic microenvironments. Cranberry flavonoids, such as A-type proanthocyanidins (PACs) and myricetin, have been shown to inhibit the activity of Gtfs and EPS-mediated bacterial adhesion without killing the organisms. Here, we investigated whether a combination of cranberry flavonoids disrupts EPS accumulation and S. mutans survival using a mixed-species biofilm model under cariogenic conditions. We also assessed the impact of cranberry flavonoids on mechanical stability and the in situ pH at the biofilm-apatite interface. Topical application of an optimized combination of PACs oligomers (100-300 muM) with myricetin (2 mM) twice daily was used to simulate treatment regimen experienced clinically. Treatments with cranberry flavonoids effectively reduced the insoluble EPS content (>80% reduction vs. vehicle-control; p0.001), while hindering S. mutans outgrowth within mixed-species biofilms. As a result, the 3D architecture of cranberry-treated biofilms was severely compromised, showing a defective EPS-matrix and failure to develop microcolonies on the saliva-coated hydroxyapatite (sHA) surface. Furthermore, topical applications of cranberry flavonoids significantly weaken the mechanical stability of the biofilms; nearly 90% of the biofilm was removed from sHA surface after exposure to a shear stress of 0.449 N/m2 (vs. 36% removal in vehicle-treated biofilms). Importantly, in situ pH measurements in cranberry-treated biofilms showed significantly higher pH values (5.2 +/- 0.1) at the biofilm-apatite interface vs. vehicle-treated biofilms (4.6 +/- 0.1). Altogether, the data provide important insights on how cranberry flavonoids treatments modulate virulence properties by disrupting the biochemical and ecological changes associated with cariogenic biofilm development, which could lead to new alternative or adjunctive antibiofilm/anticaries chemotherapeutic formulations.

Effect of Dried Powder Preparation Process on Polyphenolic Content and Antioxidant Capacity of Cranberry (Vaccinium macrocarpon L.).

Posted
Authors
Oszmianski J, Kolniak-Ostek J, Lachowicz S, Gorzelany J, Matlok N
Journal
Ind Crop Prod 77:658-665.
Abstract

The aim of the study was to evaluate the effect of the degree of fragmentation of cranberry fruit (Vaccinium macrocarpon L.) on the chemical composition and antioxidant activity of fruit powders and lyophilized pomace and juices. In analyzed samples, the basic chemical composition, total polyphenolics and antioxidant capacity were determined. Thirty-nine polyphenolic compounds, including 9 phenolic acids, 7 anthocyanins, 9 flavan-3-ols and 14 flavonols, were identified. Polyphenolic concentrations in pomaces ranged from 16 038.74 mg/100 g DW in samples from whole fruits to 17 802.52 mg/100 g DW in samples from crushed fruits. In juices, phenolic concentrations ranged from 873.12 mg/100 g DW in products from whole fruits to 3177.87 mg/100 g DW in products from crushed fruits. Antioxidant capacities were higher in dry products than in juices. The highest DPPH, ABTS and FRAP values were determined in dry pomaces obtained from crushed fruits (156.94, 275.22 and 71.47 micro mol/g DW, respectively).