Cranberry constituents prevent SOS-mediated filamentation of uropathogenic Escherichia coli
The diameter, length, and shape of bacteria are maintained with such high fidelity that these parameters are classically used as metrics in the distinction of bacterial species. Increasing evidence indicates that bacteria transiently shift their shapes into distinctive morphologies in response to environmental changes. Elongation of bacterial length into a filamentous shape provides unique survival advantages for many bacterial species. Analysis of 42 clinical isolates of uropathogenic Escherichia coli (UPEC) revealed that filamentation to host-derived antimicrobials is a conserved phenotype. Therefore, we hypothesize that filamentation represents a conserved mechanism of pathogenic bacterial persistence that can be targeted for narrow-spectrum, anti-virulence therapies. We demonstrate that cranberries prevent SulA-mediated filamentation of UPEC. Furthermore, we identify multiple fractions of cranberries that retain anti-filamentation properties. These studies provide mechanistic insight into the clinical efficacy of cranberry for patients with recurrent urinary tract infections. Inhibition of filamentation represents a novel approach to promote bacterial pathogen susceptibility to immune and antibiotic-mediated clearance to attenuate disease.